激子 - 结合的电子孔对 - 扮演在光结合相互作用现象中的核心作用,对于从光收集和发电到量子信息处理的广泛应用至关重要。固态光学的长期挑战是实现对激发运动的精确和可扩展的控制。我们提出了一种使用纳米结构的栅极电极来创建2D半导体中激子的潜在景观的技术,从而使纳米级的原位波函数启用了原位波函数。我们的方法形成了各种几何形状(例如量子点,环及其阵列)中激子的静电陷阱。我们显示出空间分离的量子点的独立光谱调整,尽管材料障碍,但仍达到了堕落。由于2D半导体中激子的强光耦合,我们观察到光学反射和光致发光测量中受到约束激发波函数的明确特征。这项工作解锁了在纳米尺度上进行启动激子动力学和相互作用的可能性,对光电设备,拓扑光子学和量子非线性光学元件产生了影响。
超脑机械传感器为测试新物理学提供了令人兴奋的途径。虽然这些传感器中的许多是为检测惯性力而定制的,但磁悬浮(Maglev)系统特别有趣,因为它们对电磁力也敏感。在这项工作中,我们建议使用磁性悬浮的超导体通过其与电磁作用的耦合来检测暗光子和轴突暗物质。几个现有的实验室实验以高频搜索这些黑暗象征的候选者,但很少有人对低于1 kHz的频率敏感(对应于深色 - 物质M dm m dm≲10-12ev)。作为机械谐振器,磁性悬浮的超导体对较低的频率敏感,因此实验室实验目前无法探索的探针参数空间也可以。暗光子和轴线暗物质可以采用振荡的磁场,该磁场驱动磁性悬浮的超导体的运动。当暗物质康普顿频率与悬浮的超导体的捕获频率匹配时,这种运动会得到共鸣。我们概述了对暗物质敏感的磁性超导体的必要模块,包括宽带和共振方案的规格。我们表明,在Hz≲f dm≲kHz频率范围内,我们的技术可以在深色photon和Axion Dark Matter的实验室探针中达到领先的灵敏度。
拓扑量子计算可以通过将逻辑信息编码为具有非亚伯统计的任何人[1,2]来消除变形,并被认为是实现耐断层量量子计算机的最有效方法。Majorana零模式的行为就像Majorana Fermions一样,每种模式都是自身的反粒子[3],并承诺一个平台来实现代表非亚洲编织组的代表,从而实现拓扑量子计算[4,5]。然而,在实验系统(例如非常规超导体[6,7])中,Majorana零模式是否诱导零能量信号[8-13],铁磁原子链[14]和二维超导管vort vort [15,15]。无论如何,它不会影响Majorana零模式编织设计的探索。后来,还提出了高阶拓扑阶段作为物质的新拓扑阶段,其在多维维度下具有非平凡边界状态。例如,Langbehn等人。提出了二维二阶拓扑超导体,以实现零维的零零模式[17]。通过应用外部磁场[18-20],可以将一阶式托架超导体驱动为二阶对应方,其中局部Majorana零模式出现在拐角处[21 - 24]。要实现Majorana零模式的编织操作,关键过程是绝热时间依赖的
我们考虑D -Wave全息超导体模型,并在度量标准上进行了完全反应,以解决文献中缺失的部分。我们通过将费米子光谱函数与动量依赖性顺序参数进行比较来识别GAP函数。通过在张量凝结物存在下对费米子光谱函数进行数值研究,我们发现了费米弧和间隙行为,与角度相似,它们与角度分辨的光发射光谱数据相似。此外,我们已经检查了耦合常数,化学电位和温度对光谱功能的影响。我们发现D -Wave Fermionic光谱函数可以通过P X和P Y冷凝物与两个Fermion风味结合在一起。同样,将D X 2 -Y 2和D XY轨道对称性与两个Fermion风味结合在一起,导致G波光谱函数。
*基于C三组传输项目数据库中历史传输投资的线性推断,并扩大了以反映全球市场。我们假设全球投资是北美投资的5倍,与IEA的估计,2019年的年度全球传输投资为900亿美元,比2019年在北美的180亿美元投资大5倍。参见:IEA,“在陈述政策方案中的电力网络的年度投资2019-2030”,请访问https://www.iea.org/data-/data--statistics/charts/charts/charts/annual-inalual-inalual-investment-in-inual-investment-in-inetworks-networks-networks-networks-networks-2019-2019-2019-2030-2030-inthe-the-policies-policies-sced-sced-scenerario(访问)。
先进的材料分析和表征(AMAC)硕士课程提供了有关主要研究工具的高级技术技能培训。amac位于俄勒冈州(CAMCOR)的高级材料表征中心。CAMCOR成立于2010年,是一个全面的服务,全面的材料表征中心,是研究人员的国家资源,学生的培训理由以及独特的仪器的行业合作伙伴关系。
简介:Samuel Carter 博士是物理科学实验室 (LPS) 的研究员主管,从事固态自旋系统的量子传感和量子计算实验研究。他是固态量子比特量子光学、自旋相干控制和固体缺陷自旋量子传感方面的专家。2004 年,他在加州大学圣巴巴拉分校获得物理学博士学位,与 Mark Sherwin 教授合作研究太赫兹驱动量子阱,并在 NIST 和科罗拉多大学博尔德分校与 Steve Cundiff 教授一起从事半导体超快光谱博士后研究。在美国海军研究实验室从事固态量子信息科学工作 15 年后,Carter 博士加入 LPS,从事半导体自旋系统的量子传感和量子计算研究。