铋是一种新兴的量子材料,具有令人着迷的物理特性,例如半金属-半导体 (SM-SC) 跃迁 1-8 和拓扑绝缘态。9-12 分子束外延 (MBE) 生长技术的发展已经生产出高质量的 Bi 薄膜,其中过去五十年理论上预测的丰富物理特性可以通过实验实现。例子包括但不限于卓越的表面态自旋和谷特性、2,13 超导性、14 瞬态高对称相变 15 和非谐散射。16,17 此外,介电常数的负实部和较小的虚部的结合,以及强的带间跃迁,使其在带间等离子体中应用前景广阔。 18 尽管如此,单晶 Bi 纳米薄膜在实际器件中的应用仍然受到限制,因为它们只能在晶格匹配的衬底上生长,例如硅 (111)、19 BaF 2 (111)、20 和云母。21 最近,Walker 等人介绍了一种双悬臂梁断裂 8,22 和热释放胶带 23 技术,用于将大面积 MBE Bi 纳米薄膜从 Si (111) 干转移到任意衬底;他们还表明,转移薄膜的电学/光学/结构特性与原生薄膜相当。8,23 该技术可以研究 Bi 在任意衬底上的独特电子、声子和自旋电子特性,例如用于新兴器件的透明、柔性、磁性或拓扑绝缘衬底。大多数
我们报告了一种双层微流体装置,以研究限制和化学梯度对野生型大肠杆菌运动性的综合影响。我们在 50 µm 和 10 µm 宽的通道中跟踪单个大肠杆菌,通道高度为 2.5 µm,以产生准二维条件。我们发现与预期相反,即使在没有化学(葡萄糖)梯度的情况下,细菌轨迹也是超扩散的。在引入化学梯度或加强横向限制时,超扩散行为会变得更加明显。在没有化学梯度的情况下,弱限制的游程分布遵循指数分布。限制和化学吸引都会导致这种行为的偏差,在这些条件下,游程分布接近幂律形式。限制和化学吸引都抑制大角度翻滚。我们的结果表明,野生型大肠杆菌在物理限制和化学梯度下以类似的方式调节其运行和翻滚。
超快激光脉冲在介电时的贝塞尔束在空间形状上形成,产生了高纵横比等离子体通道,其松弛会导致纳米渠道的形成。我们报告了纳米渠道钻孔效率的强烈增强,并通过双脉冲在10至500 ps之间的延迟隔开。这使直径降低到100 nm的纳米通道形成。实验吸收测量结果表明,钻井效率的增加是由于能量沉积的结果增加所致。纳米通道的形成对应于第二脉冲吸收的急剧变化,证明了第一个脉冲产生的相变发生。这会产生一个高度吸收的长期状态。我们的测量结果表明,它与第一个激光脉冲照明后<10 ps的时间尺度内发生的温暖玻璃的半度性化兼容。
肌肉干细胞(MUSC)在骨骼肌再生中起着至关重要的作用,居住在整个再生过程中经历尺寸和机械变化的利基市场中。这项研究调查了MUSC在再生的后期遇到的三维(3D)限制和刚度如何调节其功能,包括干,激活,增殖和分化。我们设计了一个不对称的3D水凝胶双层平台,具有可调的物理限制,以模仿再生的MUSC利基市场。我们的结果表明,增加的3D限制能够保持PAX7表达,减少MUSC激活和增殖,抑制分化,并与较小的核大小和H4K16AC水平降低相关,这表明机械限制调节了核结构和表观遗传调节。与在更狭窄的3D条件下的二维(2D)环境中,无限制的二维(2D)环境中的MUSC表现出更大的核和更高的H4K16AC表达,从而导致逐步激活,扩张和肌源性承诺。这项研究强调了3D机械提示在MUSC命运调节中的重要性,3D限制是对肌原性承诺的机械制动器,为控制肌肉再生过程中MUSC行为的机械性景观机制提供了新的见解。
摘要用于结构增强和改造,高级复合材料(例如碳纤维增强聚合物(CFRP)和玻璃纤维增强聚合物(GFRP))经常被使用。在土木工程中的应用需要彻底了解此类材料的行为和响应。为了预测应力 - 应变行为,当前的研究重点是CFRP和GFRP增强混凝土标本的数值模拟。abaqus用于使用C3D8R固体元素对混凝土样品进行建模。材料建模考虑了混凝土的非线性压缩行为和CFRP/GFRP的线性弹性压缩行为。这项研究与正常强度的混凝土相比,研究了载荷能力的增长,并局限于无限制的强度。通过与公开的实验结果进行比较,已经确认了数值模拟的有效性。此外,仔细检查了层数的影响。此外,还进行了用GFRP和CFRP增强的标本的应力 - 应变特性的比较。
抽象巨噬细胞在炎症过程的开始,维持和过渡中至关重要,例如异物反应和伤口愈合。安装证据表明,物理因素还会在体外和体内调节巨噬细胞的激活。2D体外系统表明,将巨噬细胞限制为小区域或通道可调节其表型,并改变其对已知炎症剂(如脂多糖)的反应。但是,探索尺寸和孔径如何影响巨噬细胞表型。在这项工作中,我们研究了巨噬细胞限制在微孔退火颗粒支架(MAP)中时M1/M2极化的变化,这些粒子是由退火球形微凝胶产生的颗粒状水凝胶。我们设计了三种类型的地图凝胶,分别包括40、70和130 µm直径的粒径。颗粒大小,该输出分析了MAP凝胶中3-D孔的特性。由于构建块粒子的尺寸与最终支架内部的孔径相关,因此我们的三种脚手架类型使我们能够研究空间限制程度如何调节嵌入式巨噬细胞的行为。在空间上限制了骨尺寸的巨噬细胞在细胞尺度上的巨噬细胞导致炎症反应水平降低,这与细胞形态和运动性的变化相关。引言巨噬细胞是许多伤害和疾病的核心1。这些状态可以简化为从促炎(M1)到促育(M2)表型2,3的频谱。这个因素在典型的炎症事件中,巨噬细胞是最早到达并偏振各种激活状态以执行特定功能的巨噬细胞之一。通常,M1表型与炎症的启动和维持有关,而M2表型与炎症的分辨率和再生阶段4密切相关。除了在表型中及时过渡的内在分化途径外,巨噬细胞还适应了来自相邻细胞的微环境线索和居住在5的细胞外基质。其他细胞(例如IFN-γ或IL-4)分泌的生化因子可以将巨噬细胞引导到促炎或育次育进行表型6。这些常见可溶性因子背后的分子机制及其对巨噬细胞的影响已得到广泛研究。但是,物理信号调节巨噬细胞激活的机制的探索较少。在生物材料领域,研究人员已经测试了广泛的材料特性对巨噬细胞调节的影响,以追求更好的生物相容性。例如,通过增加亲水性来修饰表面修饰可减少巨噬细胞的附着,而用细胞结合配体进行装饰表面偏向巨噬细胞极化10-13。了解控制表型巨噬细胞变化的特定机械传输机制将指导未来的生物材料设计并获得深远的生理意义。空间限制是在组织或材料支架中调节巨噬细胞反应的众所周知的参数。地形设计将巨噬细胞迫使伸长的细胞形状被证明可促进促增再效的M2表型14。通过使用微图案表面,微孔底物和细胞拥挤来诱导空间限制,研究人员能够防止小鼠骨髓来源的巨噬细胞或RAW264.7细胞扩散,从而抑制晚期的脂多糖(LPS)晚期(LPS)相关的转录程序和细胞质的表达15。肌动蛋白聚合在狭窄空间内的巨噬细胞中受到限制,这降低了依赖于肌动蛋白的转录副因素,肌动蛋白相关的转录因子-A 15。
惯性静电约束 (IEC) 利用强电场来产生和约束等离子体。它已广泛用于进行核聚变反应,并在商业上用作活化分析的中子源。本研究调查了 IEC 推进器的两种不同放电模式,即“喷射”模式和“喷雾”模式。本文比较了 IEC 系统在各种初步设计方案下的放电特性,例如阴极网格设计和阴极网格尺寸。高分辨率图像用于在多个操作点进行强度分析。基本法拉第探针用于定性记录等离子体电流密度的变化。结果表明,在更负的电位下偏置阴极会导致网格吸收的电流和可见等离子体的可见强度增加。电流和光强度逐渐增加,直到发生从“喷射”到“喷雾”的模式转变。换句话说,“喷射”模式始终先于“喷雾”模式。此外,背景压力和施加的阴极电位被证明是 IEC 设备的两个主要操作变量。最后,当设备以“喷雾”模式运行时,记录到更高的电流密度,然而,在“喷射”模式下,喷出的等离子体更加准直。
在胶体纳米晶体中,2D 纳米片具有一组独特的特性,具有极窄的发光和低激光阈值。此外,它们的各向异性形状扩大了异质结构复杂设计的范围,可以设计光谱和散射率。仍然存在的挑战是将使 NPL 稳定的壳生长与光谱可调性结合起来。事实上,由于量子限制的损失,大多数报道的带壳纳米片最终都成为红光发射体。在这里,探索了单个异质结构内横向和平面限制的组合。生长出一种能够发射黄光的 CdS/CdSe/CdS/CdZnS 核-冠-冠壳结构,该结构可响应各种激发,包括可见光子、X 射线光子、电子束和电激发。k.p 模拟预测,在理想结构中可以获得高达几百 meV 的发射可调性。这种材料还显示出由低阈值双激子发射引起的受激发射。一旦集成到 LED 堆栈中,这种材料就与亚带隙激发兼容并表现出高亮度。还研究了通过缩小像素尺寸来缩放电致发光特性。
摘要:本文提出了一种基于双SPP耦合用于亚波长限制的长距离混合波导。混合波导由金属基圆柱形混合波导和银纳米线组成。波导结构中存在两个耦合区,增强了模式耦合。强模式耦合使波导既表现出较小的有效模式面积(0.01),又表现出极长的传输长度(700 μm),波导的品质因数(FOM)可高达4000。此外,波导的横截面积仅为500nm×500nm,允许在亚波长范围内进行光学操作,有助于提高光电器件的小型化。混合波导的优异特性使其在光电集成系统中具有潜在的应用价值。
当材料的物理尺寸与电子的波长匹配或减小时,半导体中就会发生量子限制,从而产生量化的能级和离散的电子态。这是由于电子的波粒二象性,它同时表现出粒子和波的特征。限制能是对应于半导体纳米结构(如量子点)中电荷载流子的量子限制的能量。当这些结构的尺寸接近或等于电子的德布罗意波长时,就会产生量化的能级。基于有效质量近似并假设一个理想的球形量子点,其中激子被限制在球形限制势中,Harry 和 Adekanmbi (2020) 给出了球形量子点的限制能: