此结构化摘要旨在作为市长签署国盟约的本地供暖和冷却计划以及脱铲的资源中心。它将关键计划,项目,指南,案例研究,工具和其他资源分类,主要是在欧盟资助的项目框架内开发的,该项目与本地供暖和冷却计划和脱碳的框架和/或有用。结构化摘要分为四个部分:承诺和动员(1),映射(2),场景分析和计划(3)以及实施,监视和评估(4)。因此,他们涵盖了准备和制定本地供暖和冷却计划所需的各种步骤,并使用有用的资源来实施计划中可能定义的各种脱碳措施。因此,故意设计结构化摘要是因为工具箱签名人可以在本地供暖和辅助计划过程的各个不同阶段使用。这些资源中的一些可能对计划和实施过程的四个阶段之一有用,并且在这些情况下提供了其他部分的指示。
电力团队还应分析基础设施,看它是否可以适应更耗电的工作负载,例如人工智能。IT、设施和电力等更大的团队应审查物理空间,看架空地板是否能支撑新电力和混合冷却系统的总重量,并确定管道的接入路线。还应检查设施是否需要对现有基础设施进行维护,因为现有管道或设备可能受到污染或质量下降,从而导致效率低下或故障。联合团队应审查现场供水情况,确定其是否适合用于计划中的液体冷却系统。最后,应解决任何安全法规合规问题,以确保新解决方案符合标准且安全使用。
现实世界被动辐射冷却需要高度发射,选择性和全向热发射器,以将辐射冷却器保持在一定温度以下的一定温度下,同时最大程度地提高净冷却能力。尽管已经证明了各种选择性的热发射器,但由于控制多维中光子结构的热发射的极端困难,达到这些条件仍然具有挑战性。在这里,我们证明了与机器学习逆设计的混合极性介电交层热发射器,在8-13μm的大气透明度窗口中,高发射率约为0.92,大光谱选择性〜1.8,较大的发射范围为80度,高达80度。这种选择性和全向热发射极导致在〜800 w/m 2的强太阳照射下,温度降低至〜15.4°C的新记录,这显着超过了最新的结果。设计的结构在应对城市热岛效应方面还具有巨大的潜力,建模结果表明节能和部署区域减少。这项研究将对被动辐射冷却,热能光子学和应对全球气候变化产生重大影响。
锂离子电池组的温度均匀性和峰值降低对于足够的电池性能,循环寿命和安全性至关重要。在使用常规的矩形管道进行气流的气冷电池组中,在管道出口附近的电池冷却不足会导致温度不均匀性和峰值温度升高。本研究提出了一种简单的方法,即使用收敛的锥形气流管道达到温度均匀性并降低气冷锂离子电池组中的峰值温度。使用计算流体Dynamics研究了电池组的强制对流热传输,并使用实验结果验证了计算模型的限制情况。提供给气流管道的提议的融合锥度降低了峰值温度的上升并提高了电池的温度均匀性。对于常规管道,边界层的发育和下游空气温度的升高导致出口附近的细胞上的热点。相比之下,对于所提出的锥形管,流速下游增加,从而改善了出口附近细胞的热量耗散。此外,该研究还研究了锥度角,入口速度和热发生率对流量和热场的影响。值得注意的是,由于锥形角度的增加,由于出口附近的湍流传输的增加,峰温度的位置从出口区域转移到电池组中心区域。在研究中涉及整个进气速和热产生速率的锥度诱导的冷却改善。电池组的峰值温度升高和最大温度差分别降低了20%和19%。提出的有效且简单的方法可以在电动汽车中的电池组中找到其在冷却安排中的应用。
我们提出了一种非常可行的技术,无需任何实验开销,即可快速冷却彭宁阱中大型二维离子晶体的平面内自由度。通过模拟,我们证明了我们的方法能够在不到 10 毫秒的时间内将平面内模式冷却到约 1 mK 的温度。 我们的技术依赖于冷却不良的平面内运动和有效冷却的平面外运动的近共振耦合,并且无需引入额外的电位即可实现。我们的方法实现的快速冷却与典型的操作条件形成对比,在典型的操作条件下,我们对激光冷却动力学的模拟表明离子晶体的平面内运动在几百毫秒的时间尺度上非常缓慢地冷却,这一速度可能比实验加热速度慢。我们的工作为平面运动的亚多普勒激光冷却以及在彭宁阱中使用二维晶体进行更稳健、更通用的量子模拟和量子传感实验奠定了基础。
了解电子 - 波相互作用在根本上很重要,并且对设备应用具有至关重要的影响。但是,在魔法角度附近的扭曲的双层石墨烯中,目前缺乏这种理解。在这里,我们使用时间和频率分辨的光电压测量方法研究电子音波耦合,作为声子介导的热电子冷却的直接和互补探针。我们发现在魔术角靠近扭曲的双层石墨烯的冷却时,我们发现了一个显着的加速:冷却时间是从室温下降到5 kelvin的几次picseconds,而在原始的双层石墨烯中,在较低温度下,冷却到声子变为较慢。我们的实验和理论分析表明,这种超快冷却是超晶格形成的组合作用,具有低功能的Moiré声子,空间压缩的电子Wannier轨道以及降低的超晶格Brillouin区域。这可以实现有效的电子 - phonon umklapp散射,从而克服了电子 - phonon动量不匹配。这些结果将扭转角建立为控制能量放松和电子热流的有效方法。
由于现代化和人口增长,全球对冷却和空调系统的需求正在增加。过去,使用传统方法满足了冷却和空调的要求。相反,高度依赖用电的传统冷却方法有助于升高的能量需求和随后的温室气体排放。在全球范围内,这些冷却系统消耗了国际制冷研究院所报道的所有产生的电力的15%。1预计,到本世纪末,预计全球夏季温度的升高将会有所增加。2为了应对这些挑战,人们对可持续和节能的冷却系统越来越兴趣。这样做的一种技术是吸收冷却系统,该系统利用废热,太阳能等来提供冷却。印度是一个广阔的国家,电力需求不断增加。在这种情况下,冷却系统的电力需求会产生额外的负担,通常可以通过吸收冷却系统(ACS)来实现废热。用作吸收剂和氨作为制冷剂。AC的主要组件包括蒸发器,吸收器,冷凝器和发电机,具有辅助元件,例如分离器,节气门阀,HE和泵。该系统利用发电机的废热加热丰富的氨溶液,导致氨蒸发并留下热弱溶液。发电机产生的氨蒸气在冷凝器内经历冷凝,形成高压液体氨。
以前的作品发现,与单个粒径相比,辐射冷却油漆的多个纳米颗粒大小会增加太阳反射率。在这项研究中,我们通过结合MIE理论,蒙特卡洛模拟和机器学习方法来评估这一发现,以识别BASO 4和TIO 2-丙烯酸丙烯酸辐射冷却油漆中最佳粒径组合。我们发现,最佳的多个粒径确实超过了Tio 2油漆中最佳的单尺寸,但与Baso 4油漆中的最佳单尺寸相比,表现不佳。这是由于Baso 4在太阳光谱上的接近恒定折射率所致。此外,只要平均粒径在300 - 600 nm附近,不同的粒径分布也会产生类似的高太阳反射率。考虑到精确生产单个粒径是不可行的,我们得出结论,多种粒径的真正好处是它们可以实现具有成本效益的制造,同时保留了强大的高性能。
本研究对电子系统的可持续冷却解决方案中的最新技术和材料进行了全面综述,重点是它们在机械应用中的有效性和相关的环境利益。主要目的是评估可持续冷却技术的当前状态和未来前景,强调它们在应对热管理挑战时的作用,同时最大程度地减少环境影响。所采用的方法是系统的文献综述,从同行评审的学术期刊,会议记录和行业报告中汲取数据。搜索策略涉及关键字搜索,数据库过滤和参考跟踪,重点是冷却技术的最新进步及其环境影响。关键发现揭示了从传统冷却方法转变为创新,环保的解决方案。高级材料(例如相变材料和基于纳米技术的散热器)以及液体冷却和热电冷却等技术已成为有效溶液。这些技术提供了改进的热管理,减少碳足迹和提高资源效率。预计可持续电子冷却的未来景观将由智能技术,具有出色热能性能的新材料以及可再生能源的整合来塑造。该研究以对行业利益相关者和政策制定者的战略建议结束,强调需要促进创新,促进绿色冷却解决方案并设定严格的环境标准。未来的研究方向包括探索新材料和技术,将冷却系统与可再生能源整合在一起,并进行生命周期分析以完全了解这些技术的环境影响。这项研究强调了可持续冷却技术在实现电子系统环境可持续性中的关键作用。
•目前,印度处于制冷剂过渡的第三阶段。完成氯氟化合物(CFC)的阶段已完成。氢氯氟化合物(HCFC)预计将于2030年在印度淘汰。同时在2028年的基加利修正案中冻结了蒙特利尔方案,氢氟化合物(HFC),没有臭氧耗尽电势(ODP),但具有较大的全球变暖潜力(GWP),在印度设置为印度的一个阶段。但是,在市场上,天然制冷剂冷却和非实物(NIK)技术的渗透仍然有限。