目的 . 皮层内微刺激是当代脑机接口中恢复感官知觉的有效方法。然而,更好地控制神经元反应的机制以及神经元活动与刺激部位周围发生的其他伴随现象之间的关系仍不太清楚。方法 . 使用宽视野和双光子成像在 Thy1-GCaMP6s 小鼠体内研究了不同的微刺激频率,以评估在多个空间尺度上引起的兴奋性神经反应以及诱发的血流动力学反应。具体而言,我们量化了刺激引起的小鼠视觉皮层神经元激活和抑制,并使用中观尺度宽视野成像测量了血流动力学氧合血红蛋白和脱氧血红蛋白信号。主要结果 . 我们的钙成像结果显示,低频刺激更有利于驱动更强的神经元激活。神经 28 激活后的抑郁反应偏好与激活相比略高频率的刺激。血流动力学信号 29 表现出与神经钙信号相当的空间扩展。在激活后(抑郁)期间,刺激部位周围的氧合血红蛋白浓度保持升高。通过双光子显微镜测量的躯体和神经纤维网钙 31 反应显示出对刺激参数的相似依赖性,32 尽管在躯体中测得的幅度大于在神经纤维网中。此外,与神经纤维网相比,更高频率的 33 刺激在躯体中诱导更明显的激活,而抑郁 34 主要在躯体中诱导,与刺激频率无关。意义。这些结果表明 35 抑郁症的潜在机制不同于激活,需要充足的氧气供应,并影响 36 神经元。我们的研究结果为皮层内微刺激引起的兴奋性神经元活动提供了新的理解,并为利用激活和抑制现象来实现所需神经反应的神经装置提供了见解。
。CC-BY-NC 4.0国际许可证的永久性。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2023年12月16日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.12.16.571081 doi:Biorxiv Preprint
深神经网络(DNN)的几何描述有可能发现神经科学中计算模型的核心代表原理。在这里,我们通过量化其自然图像表示的潜在维度来检查视觉皮层的DNN模型的几何形状。流行的观点认为,最佳DNNS将其表示形式压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应具有较低的维几何形状。令人惊讶的是,我们发现相反方向的强烈趋势 - 具有高维图像子空间的神经网络在预测猴子电生理学和人类FMRI数据中对持有刺激的皮质反应时倾向于具有更好的概括性能。此外,我们发现,在学习新的刺激类别时,高维度与更好的性能相关,这表明更高的维度表示更适合于概括其训练领域。这些发现提出了一个一般原则,高维几何形状赋予了视觉皮层DNN模型的计算益处。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年11月30日。 https://doi.org/10.1101/2023.11.29.569243 doi:Biorxiv Preprint
研究人员没有定义他们检查的自我触摸的种类,实际上是指不同类型的自我触摸(Reinecke等,2020)。这导致了这样一个事实,即自我打击及其神经心理学的相关性仍然知之甚少。因此,在运动学上定义了不同类型的自我触摸类型,例如阶段(离散),重复性和不规则,并探索不同类型的神经相关性,将为自我调控行为的神经心理学功能提供洞察力。自我打击定义为身体两个部分之间的动态物理接触,通常是作用在身体部分的手(Lausberg,2022)。自我打击从刮擦,摩擦和揉捏变成抚摸。基于运动轨迹,可以在日常生活中观察到三种类型的自我触摸,因此如下所示:阶段性自动触摸的特征是相结构。它们包含一个传输阶段,其中手被运输到接触位置,一个概念阶段,带有单向运动路径,其中手在身体上作用于人体,直接后面是一个缩回阶段,其中手被向后移动,例如单笔冲程。重复的自我打击,例如阶段性触摸,由传输阶段,概念阶段和回缩阶段组成。然而,在概念阶段,相同的运动路径被重复使用而没有休息,例如刮擦。仅当运动沿相同方向进行多次移动时,缩回阶段才会随之而来。相比之下,不规则的自我打击没有相结构。它们的特征是各个方向上的短运动路径,实际上没有手的位移。由于它们没有概念阶段,因此它们并非基于任何运动计划(Lausberg,2019年)。重复与阶段性触摸代表两个不同的现象学实体。不是很重要的触摸数量,而是接触的质量(Spencer等,2003; Schaal等,2004; Van Mourik和Beek,2004; Huys等,2008; Lausberg,Lausberg,2013)。不同的自我打击类型发生在日常生活中不同的情况下(Heubach,2016; Mueller等,2019; Neumann et al。,2022)。重复的自我打击与更好的心理健康相关,与不规则的自我打击相反(Reinecke等,2020)。不规则的自我打击可能通过强烈的体感刺激来避免其他负面刺激。此外,发现相反的效果对于阶段与不规则的自我触摸(Lausberg,2022)。阶段性自动触摸也与急性压力期间的调节过程有关,从而增强了认知过程(Freedman和Bucci,1981; Grunwald等,2014; Heubach,2016)。阶段性自我打击的时间比例越高,主观压力体验越低(Heubach,2016年)。所有三种类型的触摸都应从情感,认知和身体功能方面进行区分。在这种情况下,触摸的数量不是重要的,而是联系的质量(Lausberg,2013年)。据我们所知,在三种特定类型的自我触摸中,从未尝试过任何尝试调查大脑激活的尝试。重复,不规则和阶段性自动的差异效果解释了当前研究人员辩论的争议,并表明了对自我打击的精细分析的重要性。先前的研究调查了自动触摸,而没有运动学定义并区分不同类型的自我接触。自我打击被描述为更“重复的”或更“类似的”,但没有使用特定的运动标准
抽象背景非侵入性脑刺激改善了阿尔茨海默氏病(AD)患者的认知功能,一些研究表明认知与可塑性之间存在密切的关系。但是,仍需要评估经颅直流电流刺激(TDC)的临床益处。目的是该研究研究了TDC在改善认知方面的作用,以及改善的认知是否与皮质可塑性改变有关。方法124 AD患者被随机分配到主动TDC(n = 63)或假TDC(n = 61)。TDC在背侧外侧前额叶皮层中应用于6周(每周5天,休息2天),进行30次治疗课程。在基线,第2周和第6周,使用了小精神状态检查和阿尔茨海默氏病评估量表认知(ADAS-COG)进行认知评估。皮质可塑性由肌电图测量的运动诱发电位(MEP)表示。结果结果表明,主动TDC的多个课程可以改善AD患者的认知功能,尤其是在记忆域中(单词回忆,召回测试指令和单词识别)。此外,主动治疗后,损坏的MEP水平得到了增强。在活动的TDCS组中,ADAS-COG总数和子项目(单词召回和单词识别)分数的改进与MEP的增强呈负相关。结论我们的研究首次表明两次TDC可以改善AD患者的认知功能。试用注册号CHICTR1900021067。这项研究还表明,认知功能障碍可能与皮质可塑性受损有关,这需要对未来认知与可塑性之间关系的机械研究。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年11月27日发布。 https://doi.org/10.1101/2023.11.27.568858 doi:Biorxiv Preprint
过去十年来计算神经科学中最有影响力的发现之一是,深神经网络(DNN)的对象识别准确性(DNNS)与他们预测依次(IT)皮质中自然图像的神经反应的能力相关[1,2]。这一发现支持了长期以来的理论,即对象识别是视觉皮层的核心目标,并建议更准确的DNN将作为IT神经元对图像的更好模型的响应[3-5]。从那时起,深度学习就进行了一场规模的革命:经过数十亿图像训练的十亿个参数规模的DNN在包括对象识别的视觉任务上竞争或超越人类。今天的DNN在对象识别方面变得更加准确,可以预测其对图像的神经元的响应变得更加准确?在三个独立的实验中,我们发现情况并非如此:DNN逐渐变得更糟,因为其精度在Imagenet上提高了。要了解为什么DNN经历这种权衡并评估它们是否仍然是建模视觉系统的适当范式,我们转向其录音,以捕获自然图像引起的神经元活动的空间分辨图[6]。这些神经元活动图表明,接受Imagenet训练的DNN学会依靠与由其编码的DNN相比,并且随着其准确性的提高,该问题恶化。我们成功解决了这个问题,这是DNNS的插件训练程序,它使他们学到的表现与人类保持一致[7]。我们的结果表明,统一的DNN破坏了ImageNet精度和神经预测准确性之间的权衡,从而攻击了当前的DNN,并为更准确的生物学视觉模型提供了途径。我们的工作表明,使用任务优化的DNNS需要进行修订的标准方法,以及其他生物学约束(包括人体心理物理学数据)需要准确地逆转视觉皮层。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2023年10月14日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.03.03.03.530970 doi:Biorxiv Preprint
隶属关系1精神病学和生物行为科学系,大卫·格芬医学院,加利福尼亚大学,洛杉矶分校,洛杉矶,美国加利福尼亚州90095,美国。2 SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,加利福尼亚州90095,美国。 3智力和发展障碍研究中心,SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,加利福尼亚州90095,美国。 4人类遗传学系,大卫·格芬医学院,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州90095,美国。 5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚大学佩雷曼医学院精神病学系,美国,19104年,美国。 6宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚大学佩雷尔曼医学院遗传学系,19104年,美国。 7位于宾夕法尼亚州宾夕法尼亚州费城的儿童医院的寿命脑研究所,美国宾夕法尼亚州,19104年,美国。 8,加利福尼亚大学,洛杉矶分校,美国加利福尼亚州90095,美国。 9美国加利福尼亚州洛杉矶分校的生物信息学跨部门计划,美国加利福尼亚州90095。 10田纳西大学健康科学中心,田纳西州田纳西州38103的遗传学,基因组学和信息学系,美国11蛋白质组学和代谢组学中心,圣裘德儿童研究医院,孟菲斯,美国田纳西州38105,美国。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系,美国13210。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国2 SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,加利福尼亚州90095,美国。3智力和发展障碍研究中心,SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,加利福尼亚州90095,美国。 4人类遗传学系,大卫·格芬医学院,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州90095,美国。 5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚大学佩雷曼医学院精神病学系,美国,19104年,美国。 6宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚大学佩雷尔曼医学院遗传学系,19104年,美国。 7位于宾夕法尼亚州宾夕法尼亚州费城的儿童医院的寿命脑研究所,美国宾夕法尼亚州,19104年,美国。 8,加利福尼亚大学,洛杉矶分校,美国加利福尼亚州90095,美国。 9美国加利福尼亚州洛杉矶分校的生物信息学跨部门计划,美国加利福尼亚州90095。 10田纳西大学健康科学中心,田纳西州田纳西州38103的遗传学,基因组学和信息学系,美国11蛋白质组学和代谢组学中心,圣裘德儿童研究医院,孟菲斯,美国田纳西州38105,美国。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系,美国13210。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国3智力和发展障碍研究中心,SEMEL神经科学与人类行为研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,加利福尼亚州90095,美国。4人类遗传学系,大卫·格芬医学院,加利福尼亚大学,洛杉矶,洛杉矶,加利福尼亚州90095,美国。5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚大学佩雷曼医学院精神病学系,美国,19104年,美国。6宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚大学佩雷尔曼医学院遗传学系,19104年,美国。7位于宾夕法尼亚州宾夕法尼亚州费城的儿童医院的寿命脑研究所,美国宾夕法尼亚州,19104年,美国。8,加利福尼亚大学,洛杉矶分校,美国加利福尼亚州90095,美国。 9美国加利福尼亚州洛杉矶分校的生物信息学跨部门计划,美国加利福尼亚州90095。 10田纳西大学健康科学中心,田纳西州田纳西州38103的遗传学,基因组学和信息学系,美国11蛋白质组学和代谢组学中心,圣裘德儿童研究医院,孟菲斯,美国田纳西州38105,美国。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系,美国13210。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国8,加利福尼亚大学,洛杉矶分校,美国加利福尼亚州90095,美国。9美国加利福尼亚州洛杉矶分校的生物信息学跨部门计划,美国加利福尼亚州90095。10田纳西大学健康科学中心,田纳西州田纳西州38103的遗传学,基因组学和信息学系,美国11蛋白质组学和代谢组学中心,圣裘德儿童研究医院,孟菲斯,美国田纳西州38105,美国。 12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系,美国13210。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国10田纳西大学健康科学中心,田纳西州田纳西州38103的遗传学,基因组学和信息学系,美国11蛋白质组学和代谢组学中心,圣裘德儿童研究医院,孟菲斯,美国田纳西州38105,美国。12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系,美国13210。 13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国12,美国纽约州锡拉丘兹的SUNY UPSTATE医科大学精神病学系,美国13210。13中部南大学生命科学学院医学遗传学医学遗传学和湖南关键实验室;长沙,匈奴,410008,中国