加密自我选择是由现代综合共识协议所采用的范式,以选择具有块的“领导者”。 Algorand [Chen and Micali,2019年]提出了规范协议,Ferreira等人。[2022]在战略参与者的最大分数上建立界限(𝛼,𝛽)可以作为其股份𝛼 𝛼和网络连接参数𝛽 𝛽的函数。虽然它们的下限和上限都是不平凡的,但它们之间存在很大的差距(例如,它们建立𝑓(10%,1)∈[10。08%,21。12%]),公开一个问题,即这些操纵的关注程度有多重要。我们将计算方法开发为任何所需的(𝛼,𝛽)的指甲𝑓(𝛼,𝛽),以达到任意精度,并在广泛的参数上实现我们的方法(例如,我们确认𝑓(10%,1)∈[10。08%,10。15%])。从方法论上讲,估计𝑓(𝛼,𝛽)可以用作估算高精度的马尔可夫决策过程的价值,其状态是实数列表。我们的方法论贡献涉及(a)重新提出问题,而是将问题计算为高精度的分布的预期价值,该分布是非线性采样操作员的定点,以及(b)可证明由各种截断和采样估算所引起的误差界定该分布的误差(似乎可以在封闭形式求解)。一个技术挑战是,基于自然采样的目标分布平均值的估计值不是公正的估计量,因此我们的方法一定超出了声称足够多的样本以接近平均值的范围。
- 优势和劣势,适用性 - 设计/评估过程的感觉 - 标准介绍(例如FIPS) - 足以知道在哪里寻找更多的信息•了解我们自己的局限性
(回想一下PG的运作方式,以及上次Dan演讲的减少)。点是(s',p',e x s)给出了SVL(PPAD -COMPLETE)的实例,并且(S',C,E X S)给出了SVL(PLS -COMPLETE)上DAG的实例。
摘要 - 开发安全的分布式系统很困难,并且必须使用高级加密时更难实现安全目标。事先工作后,我们主张使用安全程序分区来综合加密应用程序:程序员没有实现通信过程的系统,而是实现了集中的,顺序的程序,该程序将自动编译为使用密码学的安全分布式版本。虽然这种方法是有希望的,但此类编译器的安全性的正式结果在范围上受到限制。特别是,尚无安全性证据同时解决对健壮,有效应用必不可少的微妙之处:多个加密机制,恶意腐败和异步通信。在这项工作中,我们开发了处理这些微妙之处的编译器安全证明。我们的证明依赖于基于模拟的安全性,信息流控制,编排编程和并发程序的顺序化技术的新颖统一。尽管我们的证明目标是混合协议,该方案将其作为理想化功能的抽象加密机制抽象,但我们的方法为利用通用合成性提供了清晰的途径,以通过完全实例化的加密机制获得端到端的模块化安全结果。最后,在先前观察到基于仿真的安全性的事先观察之后,我们证明我们的结果保证了强大的HyperProperty保存,这是编译器正确性的重要标准,它保留了目标程序中所有源级安全属性。
摘要 - 开发安全的分布式系统很困难,甚至必须使用高级加密来实现安全目标时,甚至更难。事先工作后,我们主张使用安全程序分区来综合加密应用程序:与其实施通信过程的系统,不如实现集中的,顺序的程序,该程序将自动编译为使用加密图的安全分离版本。尽管这种方法是有希望的,但此类编译器的安全性的正式结果受到范围的限制。特别是,尚无安全性证据同时解决对鲁棒,有效的应用程序必不可少的微妙之处:多个加密机制,恶意腐败和异步通信。在这项工作中,我们开发了处理这些微妙之处的编译器安全证明。我们的证明依赖于基于模拟的安全性,信息流控制,杂货编程和对并发程序的顺序化技术的新颖统一。尽管我们的证明目标是混合协议,该协议将其作为理想化功能的抽象加密机制,但我们的方法为利用通用合成性提供了清晰的路径,以获得具有完全实例化的密码机制的端到端,模块化安全结果。最后,在先前观察到基于仿真的安全性的事先观察之后,我们证明我们的结果保证了强大的HyperProperty保存,这是编译器正确性的重要标准,它保留了目标程序中所有源级安全属性。
摘要:物联网(IoT)很快将渗透到人类生活的各个方面。由于物联网系统中使用的不同设备和协议,存在几种威胁和漏洞。常规的加密原始图或算法不能有效运行,并且不适合物联网中的资源约束设备。因此,已引入了一个最近发达的密码学,称为轻质加密图,多年来,已经提出了许多轻量级算法。本文对轻型加密字段进行了全面概述,并考虑了过去几年中提出和评估的各种流行的轻型加密算法以进行分析。还提供了算法和其他相关概念的不同分类法,这有助于新研究人员快速概述该领域。最后,根据软件实现对11种选定的超轻量级算法进行了分析,并使用不同的指标进行评估。
•这种恐惧,不确定性和怀疑(FUD)背后的基础围绕量子计算机对现有数据的未来威胁进行了围绕。通常被称为“现在的收获”,以后解密(HNDL),该理论以担忧,即民族国家将访问当前加密的数据,然后使用量子计算机在以后的时间进行解密。
摘要。时锁拼图是独特的加密原始图,它使用计算复杂性将信息保密在一段时间内保持秘密,此后安全性到期。不幸的是,在引入的二十五年之后,当前的时间锁定原料的分析技术没有提供合理的机制来构建多方加密原始的原始系统,这些密码原始的原始系统将到期的安全性用作建筑块。正如在同行评审的文献中重新指出的那样,当前对此问题的尝试缺乏合成性,完全一致的分析或功能。本文介绍了一个新的基于理论的复杂性框架和新的结构定理,以分析具有完整通用性和组成的定时原则(这是中央模块化协议设计工具)。该框架包括一个基于细粒度的复杂性的安全模型,我们称之为“剩余复杂性”,该模型可能会在定时原语上泄漏。我们针对多方计算协议的定义通过考虑细粒度的多项式电路深度来概括文献标准,以模拟可行时间到期的计算硬度。我们的组成理论依次又导致(细粒度)安全性降解,因为项目的组成。在我们的框架中,模拟器具有计算深度的多项式“预算”,在组成中,这些多项式相互作用。最后,我们通过典型的拍卖应用演示如何应用我们的框架和定理。在第一次,我们证明可以以完全一致的方式证明,具有虚假的假设 - 基于漏水,温和安全的组件的多方应用程序的属性。因此,这项工作显着地将可证明的密码学扩展到了独立的任意多项式安全性的世界,再到经常出现在实践中的小时域的领域,在实践中,组件的安全性到期,而较大的系统仍然安全。
这有时称为风险登记册,是已确定的每种风险的全面,组织良好的清单,以及为了降低或管理风险所采取的任何措施。风险评估还应确定应利用较高的价值和/或更高的风险资产,这些资产应利用量子修复。企业在识别,评估和事先进行补救工作以保护其数据免受密码分析违规和妥协的措施。就像Y2K的行动呼吁一样,Y2Q(Quantum年)所需的更改在业务基础设施的结构上很深。跨业务流程替换加密方法是一项复杂的努力,需要一致的技术和变革性运动。在这个转折点之前,企业必须立即开始确保对量子处理带来的威胁有抵抗力。