使用体外成年动物干细胞培养肉类,为迫切关注气候变化,道德考虑和公共卫生提供了有希望的解决方案。然而,栽培的肉引入了前所未有的必要性:细胞生物材料的质量尺度产生,通过促进生物反应器中的细胞增殖实现。现有的体外细胞增殖方法就可伸缩性和经济生存能力而言遇到了重大挑战。在这个角度,我们讨论了细胞增殖优化的当前景观,重点是与细胞农业有关的方法。我们检查了管理增殖率的机制,同时还解决了内在和条件率的限制。此外,我们阐述了前瞻性策略,这些策略可能会导致在培养的肉类生产过程中显着提高细胞增殖阶段的总体可扩展性和成本效益。通过探索基本细胞周期研究,病理环境和组织工程的知识,我们可以确定创新的解决方案以优化细胞扩张。
这是接受出版的同行评审纸的PDF文件。尽管未经编辑,但内容已受到初步格式。自然正在为排版纸的早期版本作为我们的作者和读者的服务。文本和数字将在本文以最终形式发表之前进行复制和证明审查。请注意,在生产过程中可能会发现可能影响内容的错误,并且所有法律免责声明都适用。
摘要 12 葡萄的驯化过程促进了所需性状的固定。与有性生殖相比,通过扦插进行葡萄的无性繁殖更容易保存这些基因型。尽管如此,即使是无性繁殖,由于基因组中潜在的遗传体细胞突变,同一葡萄园内也常常会出现不同的表型。然而,这些突变并不是影响表型的唯一因素。除了体细胞变异外,表观遗传变异也被认为是调节驯化过程中获得的表型变异的关键因素。这些表观等位基因的出现可能对葡萄的驯化产生了显著影响。本研究旨在调查驯化过程对栽培葡萄甲基化模式的影响。对栽培和野生种质进行了低代表性亚硫酸盐测序。结果显示,栽培葡萄 24 的甲基化水平高于野生葡萄。野生和栽培葡萄之间的差异甲基化分析共鉴定出 9955 26 个差异甲基化胞嘧啶,其中 78% 在栽培葡萄中高甲基化。功能分析表明,核心甲基化基因(在野生和栽培种质中持续甲基化的基因)与应激反应和萜类/异戊二烯类代谢过程有关。而呈现差异甲基化的基因与靶向过氧化物酶体的蛋白质、乙烯 31 调节、组蛋白修饰和防御反应有关。此外,我们的研究结果 32 表明,环境诱导的 DNA 甲基化模式至少部分受野生葡萄种质的原产地引导。总的来说,我们的研究结果 34 揭示了表观等位基因在葡萄驯化历史中可能发挥的关键作用。36
抽象背景/旨在研究培养的口腔粘膜上皮移植(彗星)的长期结局,以在患有慢性囊肿性疾病的眼睛中进行延伸。方法这项回顾性队列研究涉及16例接受Symblepharon彗星释放和FORNIX重建的患者的眼睛,2002年6月至2008年12月之间。平均术后随访期为102.1±46.0个月(范围:32–183个月)。The treated cicatrising disorders included ocular cicatricial pemphigoid (OCP, five eyes), thermal/chemical injury (three eyes) and other chronic diseases (seven eyes; including recurrent pterygium (two eyes), Stevens-Johnson syndrome (one eye) and graft-versus-host disease (one eye)).在手术前,术后1、4、12和24周评估了眼表面的外观,然后根据先前报道的评分系统每年评估。主要结局指标包括通过Kaplan-Meier生存曲线分析的整体和疾病特异性的FORNIX重建成功概率。SymblePharon/Fornix缩短了术后24周的复发及其与长期手术成功的关系。术后5年的结果,平均值±SD总结恢复成功概率为79.6%±10.7%,热/化学损伤的成功概率分别为100%和53.3%±24.8%(p = 0.53,对数范围测试)。在术后24周(13眼)的无疾病复发组中,3年的成功概率明显高于疾病反应组(三只眼睛)(分别为100%和33.3%和33.3%和33.3%±27.2%)(P = 0.0073,对数范围测试)。结论彗星被发现对于慢性囊化的眼睛中的象征性释放和长期洞缩式重建是安全有效的。尽管5年的成功概率差异取决于潜在疾病,但术后24周的眼表面出现是预测长期结局的一个因素。
摘要 关键信息 我们建立了一种基于核糖核蛋白的CRISPR/Cas9无DNA基因组编辑方法在栽培番茄中应用,并获得了高突变率的转染原生质体再生突变植株。 摘要 近年来,基因组编辑作为一种研究和育种方法的应用为许多作物的性状改良提供了许多可能性。在栽培番茄(Solanum lycopersicum)中,迄今为止只建立了携带CRISPR/Cas9试剂的稳定的农杆菌介导转化方法。转染原生质体芽再生是基于核糖核蛋白的CRISPR/Cas9无DNA基因组编辑方法在栽培番茄中应用的主要瓶颈。在本研究中,我们报道了利用CRISPR/Cas9技术实现栽培番茄的无转基因育种方法,包括优化原生质体分离和克服转染原生质体芽再生障碍。结果表明,含0.1 mg/L IAA和0.75 mg/L玉米素的芽再生培养基为最佳激素组合,再生率可达21.3%。原生质体分离转染4个月后,成功获得高突变率的再生植株。获得的110株再生M 0 植株中,有35株(31.8%)同时发生SP和SP5G基因突变,SP或SP5G基因中至少一个等位基因的编辑效率高达60%。
Prodigal28进行基因预测。使用BLASTP39对S蛋白进行两两比对,得到相似度>50%的BLASTP比对结果。然后使用MCL根据BLASTP结果对S蛋白进一步聚类,以创建S蛋白簇。我们从得到的S蛋白组中选择一个代表性基因组,共产生78个代表性基因组。接下来,我们使用滑动窗口法提取冠状病毒基因组中所有独特的30nt或22nt序列,分别为7,132,478和5,931,021个独特序列。独特序列按其出现的冠状病毒基因组数量降序排列。我们使用78个代表性基因组为每个独特序列创建条形码。独特序列
RISPR-Cas 系统已被分为六种亚型,在广泛的微生物群落中具有众多直系同源物 1 。最近在未培养微生物中鉴定出的 II 型和 V 型家族的紧凑型 CRISPR 系统,进一步拓宽了我们对不同 CRISPR 机制和传染性病原体之间广泛共同进化的认识 2 – 4 。此外,由于腺相关病毒 (AAV) 的体内递送限制,紧凑型 CRISPR 效应子更适合用于产生基于 CRISPR 的治疗方式,而腺相关病毒通常用于治疗持久性疾病 5 。与 Cas9 和 Cas12 的 DNA 靶向活性相比,Cas13 是最近在 VI 型 CRISPR 系统中鉴定出的具有 RNA 引导的 RNA 干扰活性的单一效应子 6、7。CRISPR-Cas13 为哺乳动物细胞和植物的 RNA 研究提供了多种应用,例如活体成像、RNA 降解、碱基编辑和核酸检测 8 。此前已鉴定出多种 Cas13 效应子,分为四个家族;然而,天然微生物中 CRISPR-Cas13 系统的未知空间仍然难以捉摸。本文,我们在宏基因组数据集中鉴定出两个紧凑的 CRISPR-Cas13 家族,并对其进行改造,使其在哺乳动物细胞中降解 RNA 并进行 RNA 碱基转换。
培养的花生被用作识别Ahmlo基因座的参考。我们的结果表明,鉴定了25个Ahmlo基因座,并分布在培养花生的铬味上。11个Ahmlo基因座位于A基因组上,其余14位在B-Genome上。在Ahmlo基因座的编码序列中观察到插入的内含子序列(4-14)和跨膜螺旋(4-8)的可变数量。此外,Ahmlo基因座的系统发育分析以及来自其他物种的同源物将Ahmlo基因座聚集成六个进化枝。将三个Ahmlo基因座聚集在已知的进化枝V中,以重新组合粉状易感性位点。此外,在特定AHMLO的启动子区域预测了四个核心启动子以及与PM敏感性有关的顺式调节元件。这些结果提供了有力的证据表明MLO基因座在培养的花生基因组中的鉴定和分布,并且可以使用识别的AHMLO基因座进行识别的特定ahmlo基因座,可用于丧失易感性研究。