Crotalaria 属植物以其对线虫的拮抗作用而闻名。研究发现,吡咯里西啶生物碱是参与这种拮抗作用的主要代谢物。为了获得生物碱含量更高、作为生物杀线虫剂的潜力更大的提取物,我们研究了通过微繁体外培养的 Crotalaria juncea 和 Crotalaria ochroleuca 提取物的化学成分和杀线虫活性。值得注意的是,C. ochroleuca(致死浓度 95% (LC 95 ) = 157.7 μg mL -1 )和 C. juncea(LC 95 = 189.9 μg mL -1 )愈伤组织提取物对爪哇根结线虫表现出高毒性。超高效液相色谱与四极杆飞行时间高通量质谱 (UPLC-QTOF-MS E ) 分析表明,其中含有吡咯里西啶生物碱、黄酮、黄酮苷和异黄酮。这些发现凸显了与传统栽培植物相比,组织培养从 Crotalaria 物种中获取提取物的潜力,并且提供了具有杀线虫作用的更高浓度的代谢物,为可持续农业铺平了道路。
种类葡萄葡萄(常见的葡萄)分为两个子种:Vitis Vinifera subsp。vinifera(培养的葡萄)和Vitis Vinifera subsp。sylvestris(野葡萄)。Vitis Vinifera subsp。Vinifera广泛用于餐桌水果,并作为生产与葡萄相关饮料的主要来源,包括葡萄酒和醋。野葡萄(Vitis Vinifera subsp。sylvestris)引起了人们的极大兴趣,因为它们被认为是培养品种的祖细胞,并且是一般理解葡萄树驯化过程的关键。为了解锁葡萄藤驯化的分子机制,基于基因组的研究被广泛进行。在这项研究中,两个格鲁吉亚野生葡萄树样品的完整叶绿体基因组受到光照射测序和计算机基因组组装,然后进行基因注释。根据结果,每个分析的叶绿体基因组的长度为160.928 bp,共有128个基因(83个蛋白质编码,37个tRNA,8 rRNA),属于遗传上独特的“ rkatsiteli'rkatsiteli'haplotype(AAA)。一项比较基因组研究揭示了叶绿体基因组中某些插入和SNP的存在。
摘要 本研究的目的是开发和评估一种基于 SPOT-5 影像的面向对象香蕉种植园制图方法,并将这些结果与手动从高空间分辨率机载影像中划定的香蕉种植园进行比较。首先通过使用光谱和高程数据进行大规模空间制图来确定耕地。在耕地内,除了光谱信息外,还包括图像共现纹理测量和上下文关系,香蕉种植园与其他土地覆盖类别的分离增加。结果表明,需要 � 2.5 m 的像素大小才能准确识别香蕉种植园内的行结构,从而能够基于纹理信息与其他作物进行基于对象的分离。经过分类后视觉编辑后,用户和生产者绘制香蕉种植园的准确率分别从 73% 和 77% 提高到 94% 和 93%。结果表明,所使用的数据和处理技术为绘制香蕉植株和其他种植园作物的地图提供了一种可靠的方法。
摘要 预育种始于从野生亲属、本地物种和其他各种未适应材料中发现有益基因。随后,这些有利特性被转移到适度的资源库中,以便育种者可以为农民创造新品种。通过发现有用特性、保存其遗传多样性并将这些基因整合成可用形式,产生了作物改良创新。将野生亲属的遗传多样性与其他不受控制的来源联系起来是主要目标。预育种策略旨在通过应用基因渗入和整合程序将野生亲属对环境困难的耐受性和对主要疾病和害虫的抗性基因引入栽培作物。预育种通过扩大种质多样性并为育种者提供易于获取的资源来培育有益特性,同时遵守该领域的基本概念,为具有商业重要性的植物育种技术提供了基础。对预育种的全面讨论对于科学家和研究人员来说都是宝贵的资源,涉及改良蔬菜作物这一关键阶段的所有方面。关键词:育种、栽培、多样性、育种前、耐受性、
摘要。现代的地球空间遥感技术允许创建新的信息系统,用于观察和研究生物地貌群落和农业群落中发生的各种过程。这在研究葡萄农业群落时尤其重要,因为其最重要的元素是多年生植物和提供收成的土壤。在这种情况下,有必要创建专门的信息技术来监测此类对象。这将允许形成一系列在时间和空间上均匀的观测结果,并提供在未来进行高度可靠的分析的能力。本研究的目的是为建立葡萄农业群落土壤肥力远程诊断系统奠定方法基础,结合栽培技术和栽培作物的生物生态特征,解决提高土地利用效率的问题,并在此基础上建立葡萄农业群落远程监测信息系统模型,旨在解决预测土壤和葡萄园状况的任务,获得有关预测肥力的客观信息,解决提高土地利用效率的问题,同时考虑到土壤栽培技术和栽培作物的生物生态特征、非生物和生物因素。
由于种植在很大程度上仅限于农林业园区,并且缺乏农业化学物质,因此乳木果黄油种植的环境影响很低。它被视为工业种植植物油的可持续替代品。4)然而,关于乳木果油的生产对造成气候变化的温室气体(GHG)排放的贡献的文献是有限且尚无定论的。
我们努力提供创新的解决方案,因此,我们培养了我们的跨学科专业产品部门,以利用我们作为多方面企业的优势。在我们的整个历史中,我们一直努力为客户提供最高质量的产品和服务,只有通过我们持续着重于与您这样的客户的合作伙伴关系和合作,这才有可能。
栽培大豆 ( Glycine max (L.) Merrill ) 是由野生大豆 ( Glycine soja ) 驯化而来,其种子比野生大豆更重,含油量更高。在本研究中,我们利用全基因组关联研究 (GWAS) 鉴定了一个与 SW 相关的新型候选基因。连续三年通过 GWAS 分析检测到候选基因 GmWRI14-like。通过构建过表达 GmWRI14-like 基因的转基因大豆和 gmwri14-like 大豆突变体,我们发现 GmWRI14-like 的过表达增加了 SW 和增加了总脂肪酸含量。然后我们利用 RNA-seq 和 qRT-PCR 鉴定了 GmWRI14-like 直接或间接调控的靶基因。过表达GmWRI14-like的转基因大豆比非转基因大豆株系表现出GmCYP78A50和GmCYP78A69的积累增加。有趣的是,我们还利用酵母双杂交和双分子荧光互补技术发现GmWRI14-like蛋白可以与GmCYP78A69/GmCYP78A50相互作用。我们的研究结果不仅揭示了栽培大豆SW的遗传结构,而且为改良大豆SW和含油量奠定了理论基础。
