能够引发 RNA 干扰 (RNAi) 的小干扰 RNA (siRNA) 药物已成为一种有前途的药物,能够抑制细胞内与疾病相关的基因的表达。然而,将它们送入正确的细胞却极具挑战性,因此只能用于治疗特定器官的疾病。这使得大量的潜在靶点尚未开发,而实现这些靶点的大部分努力都集中在开发新的递送系统,以帮助 siRNA 药物到达正确的器官。Switch Therapeutics 希望通过不同的方法开辟新的靶点空间,即在 siRNA 药物中构建一个分子“开关”,使它们能够在递送后仅在所需细胞中启动活性。将基因沉默限制在特定细胞(例如仅受疾病影响的细胞)可以降低脱靶效应的风险并改善治疗效果。Switch 的联合创始人在加州理工学院、希望之城和哈佛大学进行了多年的合作研究,才将他们最初的想法发展成一项技术。 Switch Therapeutics 首席执行官兼联合创始人 Dee Datta 表示:“最终,这三家机构围绕该平台生成了令人信服的数据,现在是时候考虑如何将其提升到一个新的水平了。”Switch Therapeutics 于 2023 年初凭借 5200 万美元的 A 轮融资脱颖而出。该公司正在研究一种可编程的 siRNA 分子,名为 CASi(条件激活 siRNA)。CASi 将单链和双链 RNA 的特征结合成一个三链分子。其中两条链是 siRNA 本身。第三条链是 siRNA 的第三条链。
版本1 - 评论审稿人Datta,Rashmi Delhi Cantt,《麻醉与重症监护室审查》返回02-NOV-2021一般性评论该提案已被仔细研究。很少有评论嵌入到返回的纸中。但是,本文的范围尚不清楚:作者是否关注各种研究的步骤,以确保实施针对各种疾病条件开发的不同微调CDSS技术?作者是否建议使用这些方法来建议在重症监护患者中进行机械通气断奶的探险?如果是这样,以下内容是无关紧要的: - 轻推技术的细节 - AI技术的开发过程 - 选择特定算法时使用的特定算法时,当符合Nudge技术的参数时,最后一部分将具有一定的意义。- 目前形式的研究变成了人类行为变化 - 随着算法的可用性而发生的变化的发生率。- 可以添加去除技术后的变化持续时间,以进一步说明对Nudge /任何其他基于AI的算法的需求 - 可用的文献将重点关注高级顾问及其对新技术和算法的可接受性。高级术语通常会抵抗变革,无论是技术还是特定算法,可能不是根据其实践/经验。这可以被视为审查员Baysari,Melissa悉尼大学医学与健康评论学院审查返回2022年1月24日返回的一般评论,感谢您有机会审查该协议论文。尽管是局部区域,但我发现本文很难阅读和理解。作者似乎还将CDS和轻推技术视为同一件事,而当他们不在时。
阿格拉 Shri S.M.Jain,ADRDE Ahmednagar Col Atul Apte,Shri RA Shaikh,VRDE Ambernath Dr Susan Titus,NMRL Bengaluru Shri Satpal Singh Tomar,ADE Smt M.R.Bhuvaneswari,CABS Smt Faheema A.G.J.,CAIR Shri R. Kamalakannan,CEMILAC Ms Josephine Nirmala,DARE Shri Kiran G.,GTRE Dr Sushant Chhatre,MTRDC Chandigarh Shri Neeraj Srivastava,TBRL Dr H.S.Gusain,SASE 钦奈 Smt S Jayasudha,CVRDE 德拉敦 Shri Abhai Mishra,DEAL Dr S.K.Mishra,IRDE Delhi Amit Pasi 先生,CFEES Dipti Prasad 博士,DIPAS Nidhi Maheshwari 博士,DIPR Ram Prakash 先生,DTRL Navin Soni 先生,INMAS Anurag Pathak 先生,ISSA D.P. 博士Ghai,LASTEC Ms Noopur Shrotriya,SAG Dr Rachna Thakur,SSPL Gwalior Dr Manorama Vimal,DRDE Haldwani Dr Atul Grover,DIBER Dr Ranjit Singh Hyderabad Dr J.K. Rai,ANURAG Shri A.R.C.Murthy,DLRL Dr Manoj Kumar Jain,DMRL Dr K Nageswara Rao,DRDL Jodhpur Shri Ravindra Kumar,DL Kanpur Shri A.K.Singh,DMSRDE Kochi Smt Letha M.M.,NPOL Leh Dr Tsering Stobden,DIHAR Pune Shri A.K.Pandey,ARDE 博士 J.A.Kanetkar Himanshu Shekhar 博士,HEMRL Anoop Anand 博士,R&DE(E) Tezpur Sibnarayan Datta 博士 Sonika Sharma 博士,DRL
Agra Shri S.M.Jain、ADRDE Ahmednagar Col Atul Apte、Shri RA Shaikh、VRDE Ambernath Susan Titus 博士、NMRL 班加罗尔 Shri Satpal Singh Tomar、ADE Smt M.R.Bhuvaneswari、CABS Smt Faheema A.G.J.、CAIR Shri R. Kamalakannan、CEMILAC Josephine Nirmala 女士、DARE Shri Kiran G.、GTRE Sushant Chhatre 博士、MTRDC 昌迪加尔 Shri Neeraj Srivastava、TBRL H.S. 博士Gusain,SASE Chennai Smt S Jayasudha,CVRDE Dehradun Shri Abhai Mishra,DEAL Dr S.K.Mishra、IRDE Delhi Shri Amit Pasi、CFEES Dr Dipti Prasad、DIPAS Dr Nidhi Maheshwari、DIPR Shri Ram Prakash、DTRL Shri Navin Soni、INMAS Shri Anurag Pathak、ISSA Dr D.P.Ghai、LASTEC Noopur Shrotriya 女士、SAG Rachna Thakur 博士、SSPL Gwalior Manorama Vimal 博士、DRDE Haldwani Atul Grover 博士、DIBER Ranjit Singh 海德拉巴博士 J.K. Rai,ANURAG Shri A.R.C.Murthy,DLRL Manoj Kumar Jain 博士,DMRL K Nageswara Rao 博士,DRDL Jodhpur Shri Ravindra Kumar,DL Kanpur Shri A.K.Singh,DMSRDE Kochi Smt Letha M.M.,NPOL Leh Tsering Stobden 博士,DIHAR Pune Shri A.K.Pandey,ARDE J.A. 博士Kanetkar Himanshu Shekhar 博士,HEMRL Anoop Anand 博士,R&DE(E) Tezpur Sibnarayan Datta 博士 Sonika Sharma 博士,DRL
Agra Shri S.M.Jain、ADRDE Ahmednagar Col Atul Apte、Shri RA Shaikh、VRDE Ambernath Susan Titus 博士、NMRL 班加罗尔 Shri Satpal Singh Tomar、ADE Smt M.R.Bhuvaneswari、CABS Smt Faheema A.G.J.、CAIR Shri R. Kamalakannan、CEMILAC Josephine Nirmala 女士、DARE Shri Kiran G.、GTRE Sushant Chhatre 博士、MTRDC 昌迪加尔 Shri Neeraj Srivastava、TBRL H.S. 博士Gusain,SASE Chennai Smt S Jayasudha,CVRDE Dehradun Shri Abhai Mishra,DEAL Dr S.K.Mishra、IRDE Delhi Shri Amit Pasi、CFEES Dr Dipti Prasad、DIPAS Dr Nidhi Maheshwari、DIPR Shri Ram Prakash、DTRL Shri Navin Soni、INMAS Shri Anurag Pathak、ISSA Dr D.P.Ghai、LASTEC Noopur Shrotriya 女士、SAG Rachna Thakur 博士、SSPL Gwalior Manorama Vimal 博士、DRDE Haldwani Atul Grover 博士、DIBER Ranjit Singh 海德拉巴博士 J.K. Rai,ANURAG Shri A.R.C.Murthy,DLRL Manoj Kumar Jain 博士,DMRL K Nageswara Rao 博士,DRDL Jodhpur Shri Ravindra Kumar,DL Kanpur Shri A.K.Singh,DMSRDE Kochi Smt Letha M.M.,NPOL Leh Tsering Stobden 博士,DIHAR Pune Shri A.K.Pandey,ARDE J.A. 博士Kanetkar Himanshu Shekhar 博士,HEMRL Anoop Anand 博士,R&DE(E) Tezpur Sibnarayan Datta 博士 Sonika Sharma 博士,DRL
蒙特卡洛 (MC) 方法已用于计算半导体中的半经典电荷传输超过 25 年,是微电子器件模拟最强大的数值工具 [1]。然而,当今的技术将器件尺寸推向了极限,传统的半经典传输理论已不再适用,需要更严格的量子传输理论 [2]。为此,人们提出了各种基于格林函数 [3] 或维格纳函数 [4] 方法的电荷传输量子动力学公式。虽然这种量子力学形式允许严格处理相位相干性,但它们通常通过纯现象学模型描述能量弛豫和失相过程。人们还提出了一种用于分析载流子-声子相互作用下的瞬态传输现象的完整量子力学模拟方案 [5]。然而,由于需要大量计算,其适用性仍然仅限于短时间尺度和极其简单的情况。因此,尽管人们付出了很多努力,尽管在研究这些量子动力学公式方面取得了无可置疑的智力进步,但它们在强散射动力学存在下的实际设备中的应用仍然是一个悬而未决的问题。Datta、Lake 和同事的最新成果似乎很有希望 [6]。然而,他们的稳态格林函数公式不能应用于时间相关的非平衡现象的分析,而这种现象在现代光电器件中起着至关重要的作用。在本文中,我们提出了一种广义 MC 方法来分析量子器件中的热载流子传输和弛豫现象。该方法基于控制单粒子密度矩阵时间演化的动力学方程组的 MC 解;它可以被视为对开放系统的扩展
Rajeev K. Varshney 1,2 ✉ , Manish Roorkiwal 1 , Shuai Sun 3,4,5 , Prasad Bajaj 1 , Annapurna Chitikineni 1 , Mahendar Thudi 1,6 , Narendra P. Singh 7 , Xiao Du 3,4 , Hari D. Upadhyaya 8,9 , Aamir W. Khan 1 , Yue Wang 3,4 , Vanika Garg 1 , Guangyi Fan 3,4,10,11 , Wallace A. Cowling 12 , José Crossa 13 , Laurent Gentzbittel 14 , Kai Peter Voss-Fels 15 , Vinod Kumar Valluri 1 , Pallavi Sinha 1,16 , Vikas K. Singh 1,16 , Cécile Ben 14,17 , Abhishek Rathore 1 , Ramu Punna 18 , Muneendra K. Singh 1 , Bunyamin Tar'an 19,Chellapilla Bharadwaj 20,Mohammad Yasin 21,Motisagar S. Pithia 22,Servejeet Singh 23,Khela Ram Soren 7,Himabindu Kudapa 1,DiegoJarquín24,Philippe Cubry 25,Lee T. IT A. Deokar 19,Sushil K. Chaturvedi 28,Aleena Francis 29,RékaHoward30,Debasis Chattopadhyay 29,David Edwards 12,Eric Lyons 31,Yves Vigourox 25,Ben J. Hayes 15 、 Henry T. Nguyen 35 、 Jian Wang 11,36 、 Kadambot H. M. Siddique 12 、 Trilochan Mohapatra 37 、 Jeffrey L. Bennetzen 38 、 Xun Xu 10,39 和 Xin Liu 10,11,40,41 ✉
Agra Shri S.M. div>Jain,Adrde Ahmednagar Col Atul Apte,Shri Ra Sha Shaikh,Vrde Ambernath Susan Titus博士,NMRL Bengaluru Shri Shri Shri Satpal Singh Tomar,Ade Smt M.R. div> div>Bhuvaneswari,Cabs Smt Smt Fahema A.G.J.,Cair Shri R. Kamalakannan,Cemilac Josephine Nirmala女士,Dare Shri Kiran G. div>Gusain,Sase Chennai Smt S Jayasudha,Cvrde Dehradun Shri Abhai Mishra,Deal S.K. div>Mishra,Irde Delhi Shri Amit Pasi,Cfees Dipti Prasad博士,Dipas Dr Nidhi Maheshwari博士,Dipr Shri Ram Prakash,Dtrl Shri Navin Soni,Inmas Shri Anurag Pathak,Insa shri anurag Pathak,Issa D.P.P.P.P.P.P. div>Ghai,Lastec MS Noopur Shrotriya,Sag Rachna Thakur博士,SSPL Gwalior Dr Manorama Vimal博士,Drde Haldwani Dr Atul Grever博士,Diber Ranjit Singh Hyderabad博士J.K. Rai,Anurag Shri A.R.C. div>Murthy,DLRL Manoj Kumar Jain博士,DMRL K Nageswara Rao博士,Drdl Jodhpur Shri Ravindra Kumar,DL Kanpur Shri A.K. div>Singh,DMSRDE KOCHI SMT LEETHA M.M. div>Pandey,Arde J.A. div>Kanetkar博士Himanshu Shekhar博士,Hemrl Anoop博士Anand,研发
Referents • Coe BP, Witherspone K, Rosenfeld JA, of BW, Vulto-from Silfwood AT, BoscoP, Friend C, Bono S, True-Hower-Hoics A, Pfundt R, Crumm N, Carvill N, Carvill GL, Li D, Amall GL, Lead Brown N, Lockhart PJ, Scheffer IE, Alberti A, Shaw M, Pettinato R, Tervo R,Lurd N,Reafter MR,Torchia BS,O' Roak BJ,Fcheera M,Hehir-Kwa,Mercea J,The Free BB,Free BB,Freeer BB,Freeer BB,Freeer BB,Romano C,Romano C,Eicher EE。进行罚款分析或复制NUMBR变化标识指定基因相关的白色发育延迟器。natgenet。2014年10月; 46(10):1063-71。 doi:10,1038/ng.3092。EPUB 2014年9月14日。PubMed引用(htps://pubmed.ncbi.ncbi.nlm.gv/25217958)或PubMed Central上的免费文章(//wwww..nl.nl.nl.nl.nl.ncb.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.gv.gv/pmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmc417294/) Nishizawa T,Dea AN,Miny P,YamamotoT。通过SetBP1Haploss Sendim Causs综合征降低表达。J Med。2011 feb; 48(2):117-22。 doi:10,1136/jmg.2010,084582。Epub 2010年10月30日。引用PubMed(htps://pubmed.ncbi.ncbi.nlm.nlm.gv/21037274)•Brivasen RO,Srivastava S,C,C,C,Rossca G,Rossa G,Rossa M,Rossa M,Rossa M,Rossa M,Rossa M,Borner RA。 MMK,当S,Fisherse,Bon Bw的摩根。临床描述或SETBP1单盘式典型。EUR J HUM GENET。 2021年8月; 29(8):1198-1205。 doi:10。EUR J HUM GENET。2021年8月; 29(8):1198-1205。 doi:10。
这是这个长期运行的半导体会议83周年纪念日。。。2025设备研究会议宣布呼吁北卡罗来纳州达勒姆(Durham)的论文(2025年1月6日) - 全球运行时间最长的设备研究会议(DRC)宣布了该会议83周年纪念日DRC 2025的论文呼吁。第83届DRC将于2025年6月22日至25日在北卡罗来纳州达勒姆市的杜克大学举行。DRC将来自学术界和行业许多学科的主要科学家,研究人员和学生汇集在一起,分享了他们在设备科学,技术和建模方面的最新研究和发现,包括许多关键设备技术的第一个披露。drc宣布抽象提交的截止日期是2025年2月15日。要提交摘要,请下载2025年的文件。DRC 2025技术计划提供了丰富而多样的议程,其中包含三个全体会议,七个主题演讲和40位受邀演讲者,涵盖了广泛的与设备相关的主题。该计划将包括口头和海报会议,展示电子和光子设备中的先进研究,晚间面板讨论以及有关异质整合设备的特别关注会议。全体会议将由设备科学技术领域的世界知名领导人进行:Eli Yablonovitch,Nicky Lu和Suman Datta。其他计划的重点包括有关异质整合,建模和模拟教程的简短课程以及充满活力的学生参与以及学生纸张奖励奖励出色的贡献。DRC 2025与电子材料会议(EMC)协调,认识到设备和电子材料研究之间的牢固相互作用,为两种会议的参与者之间的信息提供了有意义的信息交流的机会。DRC 2025在以下领域中寻求纸张摘要: