摘要。单倍型组装是重建在母体和父亲遗传的染色体拷贝上等位基因组合的问题。单个单倍型对于我们对不同变体组合如何影响表型的理解至关重要。在这项工作中,我们专注于单个二倍体基因组的基于读取的单倍型组件,该组件直接从变体基因座的读取对齐中重建了两种单倍型。我们介绍了Ralphi,这是一种新颖的深入强化学习框架单倍型组装的框架,该框架将深度学习的代表力与强化学习的代表力整合在一起,以准确地将片段读取其各自的单倍型集。为了为增强学习设定奖励目标,我们的方法将问题的经典减少到片段图上的最大片段切割公式中,其中节点与读取和边缘权重相对应捕获共享变体站点上读取的冲突或一致。我们在1000个基因组项目中衍生自基因组的片段图拓扑数据集上训练了Ralphi。我们表明,在标准人类基因组基准中,在短和长的范围内,Ralphi始终以在明显和长的覆盖范围下以相当或更长的单倍型块长度在最新的读取状态下达到较低的错误率。Ralphi可从https://github.com/popiclab/ralphi获得。
2 请注意,此处讨论的算法在概念上不同于用于分析量子多体系统的量子蒙特卡罗技术(Pang ( 2016 ))。3 其他方法包括量子搜索(如 Grover ( 1996 ) 中的方法)和相位估计(如 Kitaev ( 1995 ) 中的方法)。4 有关编码概率分布,请参阅 Grover 和 Rudolph ( 2002 )、Zoufal 等人 ( 2019 )、Herbert ( 2021a ),有关编码随机变量,请参阅 Rebentrost 等人 ( 2018 )、Vedral 等人 ( 1996 )、Herbert ( 2021b )、Woerner 和 Egger ( 2019 )、Stamatopoulos 等人 ( 2020a )。
大多数颅内动脉瘤(ICA)出现在脑血管树的特定部分上,名为Willis圈(Cow)。尤其是,它们主要出现在构成这种圆形结构的主要动脉分叉上的十个。因此,对于有效而及时的诊断,开发一些能够准确识别每个感兴趣分叉(BOI)的方法至关重要。的确,自动提取出现ICA风险较高的分叉将使神经放射学家快速浏览最令人震惊的地区。由于最近在人工智能上的效果,深度学习是许多模式识别任务的最佳性能技术。此外,各种方法是专门为医学图像分析目的而设计的。这项研究旨在帮助神经放射科医生迅速找到任何出现ICA发生风险的分叉。它可以看作是一种计算机辅助诊断方案,在该方案中,人工智能有助于访问MRI内感兴趣的区域。在这项工作中,我们提出了一种完全自动检测和识别构成威利斯圈子的分叉的方法。已经测试了几个神经网络架构,我们彻底评估了分叉识别率。
摘要。深部脑刺激 (DBS) 的术前路径规划是一个多目标优化问题,即在多个放置约束之间寻找最佳折衷点。它的自动化通常通过使用聚合方法将问题转变为单目标来解决。然而,尽管这种方法很直观,但它以无法找到所有最优解而闻名。在本文中,我们引入了一种基于多目标优势的 DBS 路径规划方法。我们将它与经典的多个约束的聚合加权和以及由神经外科医生对 14 个 DBS 病例进行的回顾性研究的手动规划进行了比较。结果表明,基于优势的方法优于手动规划,并且与传统的加权和方法相比,它涵盖了更多相关的最佳切入点选择,因为传统的加权和方法会丢弃外科医生可能喜欢的有趣解决方案。
“传统上,使用头皮脑电图等标准方法研究人类的这些深层边缘大脑区域一直具有挑战性。我们的团队能够通过利用从独特患者群体收集的数据来克服这一挑战:癫痫患者通过手术植入设备,可以通过植入杏仁核和海马深处的电极进行慢性脑电图记录,”伊坎医学院生物医学科学研究生院神经科学博士生、论文第一作者克里斯蒂娜·马赫 (Christina Maher) 表示。
摘要,我们根据深钢筋学习的应用(DRL)提出了范式控制流体流体的转变。此策略正在迅速在机器学习社区中传播,并且以与非线性控制理论的联系而闻名。DRL的起源可以追溯到最佳控制对非线性问题的概括,在连续公式中引导到Hamilton-Jacobi-Bellman(HJB)方程,DRL旨在提供离散的,数据驱动的近似值。DRL中唯一的先验要求是定义瞬时奖励,以衡量系统处于给定状态时动作的相关性。然后将值函数定义为预期的累积奖励,这是最大化的目标。通过神经网络近似控制动作和值函数。在这项工作中,我们通过参数分析在一维[4]中控制了DRL和重新发现我们最近控制Kuramoto-Sivashinsky(KS)方程的结果。
摘要医学事物(IOMT)由于当前的AI进步,在医疗保健应用中变得越来越普遍,有助于改善我们的生活质量并确保可持续的卫生系统。具有切割边缘科学能力的IOMT系统能够检测,传输,学习和推理。结果,这些系统在包括脑肿瘤检测在内的一系列医疗保健应用中被证明非常有用。提出了一种基于深度学习的方法,用于鉴定脑肿瘤患者和正常患者的MRI图像。在这种方法中应用了基于形态学的分割方法,以在MRI图像中分离肿瘤区域。综合神经网络,例如LENET,MOBILENETV2,DENSENET和RESNET,是最有效的神经网络。建议的方法适用于从多家医院收集的数据集。使用多种指标评估所提出的方法的有效性,包括准确性,特异性,灵敏度,召回和f得分。根据绩效评估,LENET,MOBILENETV2,DENSENET,RESNET和EFIDENENET的准确性分别为98.7%,93.6%,92.8%,91.6%和91.9%。与现有方法相比,LENET的性能最佳,平均精度为98.7%。
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
深部脑刺激是一种广泛用于治疗帕金森病 (PD) 的方法,但目前缺乏对不断变化的临床和神经状态的动态响应。反馈控制有可能提高治疗效果,但“自适应”神经刺激的最佳控制策略和其他好处尚不清楚。我们在三名 PD 患者(五个半球)的正常日常生活中实施了由丘脑底核或皮质信号控制的自适应丘脑底核刺激。我们使用数据驱动的宽频率范围和不同刺激幅度的场电位分析来确定残余运动波动的神经生理生物标志物。任一部位的窄带伽马振荡(65-70 Hz)成为刺激期间感知的最佳控制信号。一项盲法随机试验表明,与临床优化的标准刺激相比,运动症状和生活质量有所改善。我们的方法凸显了基于数据驱动的控制信号选择的个性化自适应神经刺激的前景,并可能应用于其他神经系统疾病。
大量积累的药物基因组学、化学基因组学和副作用数据集为药物反应预测、药物靶标识别和药物副作用预测提供了前所未有的机会。现有的计算方法将其范围限制在这三个任务中的一项,不可避免地忽略了它们之间的丰富联系。在这里,我们提出了 DrugOrchestra,这是一个深度多任务学习框架,可以联合预测药物反应、靶标和副作用。DrugOrchestra 利用预先训练的基于分子结构的药物表征来连接这三个任务。DrugOrchestra 不是直接对单个任务进行微调,而是使用深度多任务学习通过同时对药物反应、靶标和副作用预测进行微调来获得基于表型的药物表征。通过将这三个任务结合在一起,DrugOrchestra 能够仅通过了解其分子结构来预测看不见的药物。我们通过整合三个任务中的 8 个数据集,构建了一个包含超过 21,000 种药物的异构药物发现数据集。与在单个任务或单个数据集上训练的方法相比,我们的方法获得了显着的改进。我们进一步揭示了 8 个数据集和 3 个任务之间的可迁移性,为理解药物机制提供了新的见解。关键词:多任务学习、药物靶标预测、药物副作用预测、药物反应预测可用性:https://github.com/jiangdada1221/DrugOrchestra