人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
糖尿病是一个重要的全球健康问题,导致广泛的发病率和死亡率,对人类健康构成了严重威胁。最近,生物活性脂质分子1-磷酸盐在糖尿病研究领域引起了极大的关注。这项研究的目的是全面了解鞘氨醇1-磷酸调节糖尿病的机制。通过全面的文献计量分析和对相关研究的深入综述,我们调查并总结了各种机制,这些机制通过这些机制,通过这些机制,鞘氨醇1-磷酸在糖尿病前,1型糖尿病,2型糖尿病及其并发症及其并发症(例如糖尿病性肾病,糖尿病性肾病,腹膜病,心脏病,Neuropathy,Neuropathy,Neuropathy,Neuropant,Neuropathy,Neuropathy,Neuropathy,Neuropathy,<),包括但不限于调节脂质代谢,胰岛素敏感性和炎症反应。这项学术工作不仅揭示了在糖尿病治疗中使用鞘氨醇1-磷酸盐的新可能性,而且还为未来研究人员提供了新的见解和建议。
节肢动物是一种非常富含物种的分类单元,可提供必不可少的生态系统服务,例如授粉或营养循环(Yang and Gratton 2014,Stork 2018,Cardoso等,Cardoso等人。2024)。尽管其重要性至关重要,但与脊椎动物相比,节肢动物在保护研究中仍然明显研究(Clark and 2002年5月,Cardoso等人,Cardoso等。2011,Di Marco等。 2017)。 这种监督尤其令人担忧,因为这些重要的生物目前正受到普遍的危机的威胁,称为“一千次死亡”(Wagner等人。 2021)。 问题源于全球威胁的结合,包括极端气候,污染,富营养化,入侵物种和城市化,这共同导致节肢动物的丰富性和物种丰富度大幅下降(Wagner 2020,Harvey等,Harvey等,Harvey等,2011,Di Marco等。2017)。这种监督尤其令人担忧,因为这些重要的生物目前正受到普遍的危机的威胁,称为“一千次死亡”(Wagner等人。2021)。问题源于全球威胁的结合,包括极端气候,污染,富营养化,入侵物种和城市化,这共同导致节肢动物的丰富性和物种丰富度大幅下降(Wagner 2020,Harvey等,Harvey等,Harvey等,预计随着全球变化的预计,这种情况将恶化,使节肢动物面临更大的风险(Hallmann等人2017,Seibold等。 2019,Soroye等。 2020)。2017,Seibold等。2019,Soroye等。2020)。
摘要 - 稳态视觉诱发电位(SSVEP)当前是脑部计算机界面(BCI)中使用最广泛的范例之一。尽管SSVEP-BCI的特征是它们的高且稳健的分类性能,但从用户体验的角度来看,反式刺激的重复表现是不舒服的。的确,SSVEP刺激的低水平视觉特征使它们随着时间的流逝而紧张,并且可能会破坏需要持续关注的任务。他们甚至可以诱导癫痫发作。本研究探讨了刺激幅度深度(90%的幅度降低),以设计SSVEP刺激,以改善用户舒适性的解决方案。在低振幅和标准的全幅度SSVEP刺激之间,系统比较了不同管道获得的分类精度。结果揭示了使用与任务相关的组件分析(TRCA)分类方法的高(99.8%)和低幅度(80.2%)刺激的高分类精度。目前的发现证明了减少SSVEP刺激幅度以增加用户舒适度为透明BCI操作铺平道路的有效性。
NISQ(嘈杂的中等规模quantum)之间的方法没有任何证据证明量子优势和完全容忍断层的量子计算,我们提出了一种方案,以实现可证明的可证明的超级物质量子量子(在某些广泛接受的复杂性构想)中,可以与微型误差误差校正要求有稳健的噪声。我们选择一类采样问题,其中包括稀疏的IQP(瞬时Quantum Quantumial多项式时间)电路,我们通过引入Tetrahelix代码来确保其耐断层的实现。通过合并几个四面体代码(3D颜色代码)获得此新代码,并且具有以下属性:每个稀疏的IQP门都允许横向启动,并且逻辑电路的深度可以用于其宽度。结合在一起,我们获得了任何稀疏的IQP电路的Depth-1实现,直到编码状态的制备。这是以一个空间为代价的,这仅在原始电路的宽度中是多毛体。我们还表明,也可以通过经典计算的单一步骤进行恒定深度进行状态准备。因此,我们的构造表现出在恒定深度电路上实现的采样问题,具有强大的超多种量子量子优势,并具有一轮的测量和进率。
在其一生中,Alvin经历了许多升级,以保持最先进的研究平台。最新的升级包括将其配备具有更好的人体工程学和提高可见性的新的,更大的人员领域,以及改进的推进器和更高级的指挥和控制系统。还安装了新的高清成像系统和更快的数据采集功能,并且增强了惯性导航功能,即使是在较大的深度,也可以非常准确地跟踪从地面到海底,以及一个新的科学界面,从而可以快速地集成常规和新型传感器,以供烟雾访问。
脉搏率(PR)是评估一个人健康的最重要标记之一。随着对长期健康监测的需求不断增长,使用成像光电学(IPPG)对非接触式PR估计的关注非常关注。这种非侵入性技术基于肤色细微变化的分析。尽管可以改善IPPG,但现有算法容易受到较不受约束的场景(即头部移动,面部表情和环境条件)。在本文中,我们提出了一个新颖的端到端时空网络,即X-ippgnet,直接从面部视频记录中直接进行瞬时PR估计。不像大多数现有系统一样,我们的模型从头开始学习IPPG概念,而无需结合任何先验知识或通过提取血液体积脉冲信号的提取。受Xception网络体系结构的启发,颜色通道解耦用于学习其他照相学信息信息,并概念地降低计算成本和内存重新质量。此外,X-ippGnet可以从短时间窗口(2秒)中预测脉搏率,该脉冲率具有较高且明显的脉搏率的优点。实验结果揭示了在所有条件下的高性能,包括头部运动,面部表情和肤色。我们的AP-PRACH明显优于三个基准数据集上的所有当前最新方法:MMSE-HR(MAE = 4。10; RMSE = 5。32; r = 0。85),ubfc-rppg(Mae = 4。99; RMSE = 6。26; r = 0。67),mahnob-hci(Mae = 3。17; RMSE = 3。93; r = 0。88)。
地球上的生命取决于微观连接。很长一段时间以来,我们对微生物世界的理解与疾病和食物应用有关。可能是因为它们是看不见的,除非影响人类的生活,否则不会认真考虑微生物。在20世纪末,分子和遗传工具的出现揭示了微生物世界的新型视野,揭示了在所有生态系统中微生物的普遍性和世界性分布,包括最极端的自然环境,以及包括较高生物体在内的较高生物体,包括人类在内的1,2。它们的高浓度和与广泛功能能力相关的大量多样性使他们成为我们星球上的重要参与者。他们提供了三分之二的氧气活生物体呼吸,并且在所有元素的回收中起着至关重要的作用。微生物还通过促进消化,产生维生素K,促进免疫系统的发展以及对有害化学物质的排毒3来使人类健康和福祉受益。3。作为它们生产的无数分子以生存或繁殖的非常有效的化学厂,它们也是用于工业,生物技术或治疗应用的创新生物活性分子的来源,包括对皮肤疾病的治疗4,5。
1。S. Iyer,R。M。Gaikwad,V。Subba-Rao,C。D。Woodworth和I. Sokolov,“原子力显微镜检测到正常和癌细胞表面刷的差异”,NAT。纳米技术。4(6),389–393(2009)。2。H. Knecht和S. Mai,“端粒和核结构的3D成像:基于3D纳米形态的诊断的新兴工具”,J。单元格。生理学。226(4),859–867(2011)。3。H. Subramanian,P。Pradhan,Y。Liu,I。R. Capoglu,X。Li,J。D. Rogers,A。Heifetz,A。Heifetz,D。Kunte,H。K. Roy,A。Taflove,A。Taflove和V. Backman,“用于检测组织学无效的纳米级后果的光学方法论,对生物学细胞进行了遗传替代。natl。学院。SCI。 U.S.A. 105(51),20118–20123(2008)。 4。 H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69(13),5357–5363(2009)。 5。 R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,” 肠dis。 17(12),2427–2435(2011)。 6。 K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。SCI。U.S.A. 105(51),20118–20123(2008)。 4。 H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69(13),5357–5363(2009)。 5。 R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,” 肠dis。 17(12),2427–2435(2011)。 6。 K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。U.S.A. 105(51),20118–20123(2008)。4。H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res.69(13),5357–5363(2009)。5。R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,”肠dis。17(12),2427–2435(2011)。6。K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。69(3),1199–1204(2009)。7。I. Itzkan,L。Qiu,H。Fang,M。M. Zaman,E。Vitkin,I。C. Ghiran,S。Salahuddin,M。Modell,C。Andersson,L。M. Kimerer,P。B. Cipolloni,P。B. Cipolloni,K。H. H. Lim,S。D. Freedman,S。D. Freedman,I.Bigio,I.Bigio,I.B.Sachs,E。B. Sachs,E。B. Hanlon,L.Hanlon,l. t. t. t. t. t. t. pering and L. T.光谱显微镜在没有外源标签的活细胞中监测细胞器”。natl。学院。SCI。 U.S.A. 104(44),17255–17260(2007)。 8。 Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。SCI。U.S.A. 104(44),17255–17260(2007)。 8。 Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。U.S.A. 104(44),17255–17260(2007)。8。Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。选择。16(11),116017(2011)。9。G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。xx,362 p。