摘要 - 由于复杂且多样化的水文地质特性,边界条件和人类活动以及这些元素之间的非线性相互作用,农业区域的水深度预测很困难。因此,作为代替昂贵的模型的替代品,本研究建立了一个由长期短期存储网络(LSTM)的创新系列时间框架以及完全连接的层构成的模型。第一个LSTM层采用了辍学方法。使用14年(2000- 2013年)在中国Hetao灌溉区的北部沙漠的五个辅助领域的数据(2000- 2013年)的数据测试和评估了建议的模型。建议的模型可以根据蒸发,水转移,温度,时间和降水的转移来预测地下水位深度。实验将14年的数据划分为培训和验证数据集。传统的喂养神经网络(FFNN)在相对较低(0.004–0.495)R2分数中获得了建议的框架在深度预测的深度(0.789–0.952)中获得了较高的R2评分,这表明建议的框架可以弥补和获得过去的数据,并获得了过去的数据。进一步探索了辍学方法的有效性,以及建议模型的设计。实验的结果表明,使用辍学策略可以大大减少过度拟合。此外,提出的模型的R2分数与双LSTM框架的R2分数的比较范围为0.170-0.864,它描述了建议的体系结构的适当性,这有助于在系列时间的数据中进行高度学习能力。因此,建议的模型可以用于预测地下水位的深度,以替代水文地质数据,尤其是在水文学数据稀缺的地方。
█图4:A。前上颌前节的正面视图显示出不规则的牙龈边缘,肥厚的上颌frenum和两个出血部位,其中从中央和外侧切牙的根部从中部和侧牙之间取出微小粘剂。B.二极管激光牙龈切除术后牙龈边缘接近理想,并且进行了培养学。C.软组织愈合后,保持牙龈缘,没有明显的疤痕。
海堤是沿海地区重要的防御基础设施,保护内陆地区免受风暴潮、海浪越堤和土壤侵蚀的侵袭。海堤趾部冲刷是由海浪引起的床层物质的堆积和侵蚀造成的,对沿海基础设施的结构完整性构成了重大威胁。准确预测冲刷深度对于合理有效地设计和维护沿海结构至关重要,这有助于降低趾部冲刷导致结构失效的风险。然而,目前用于评估倾斜结构趾部冲刷的指导和预测工具有限。近年来,人工智能和机器学习 (ML) 算法引起了人们的兴趣,尽管它们为许多沿海工程应用提供了稳健的预测模型,但此类模型尚未应用于冲刷预测。本文,我们开发并提出了基于 ML 的模型,用于预测倾斜海堤趾部冲刷深度。使用四种 ML 算法,即随机森林 (RF)、梯度提升决策树 (GBDT)、人工神经网络 (ANN) 和支持向量机回归 (SVMR)。使用综合的物理建模测量数据来开发和验证预测模型。采用一种新颖的特征选择、特征重要性和超参数调整算法框架,用于基于 ML 的模型的预处理和后处理步骤。提出了深入的统计分析来评估所提模型的预测性能。结果表明,在本研究中测试的所有算法中,预测准确率至少为 80%,总体而言,SVMR 的预测最准确,判定系数 (r2) 为 0.74,平均绝对误差 (MAE) 值为 0.17。在所测试的算法中,SVMR 算法的计算效率也最高。本研究提出的方法框架可应用于冲刷数据集,以快速评估海岸防御结构的冲刷情况,从而促进基于模型的决策。
(CALCE)马里兰大学,马里兰州帕克分校,美国 通讯作者。电话:+1 301 227 3985;电子邮件:christopher.hendricks@navy.mil;海军水面作战中心卡德罗克分部,9500 MacArthur Blvd,西贝塞斯达,马里兰州 20817,美国 摘要:锂离子电池的诊断和预测依靠电阻抗、容量和电压测量来推断电池的内部状态。电池结构的机械变化代表了电池状态的额外衡量标准,因为这些变化与整体电池健康状况有关。当锂离子电池充电和放电时,锂离子会从阳极和阴极插入或移除,这一过程称为嵌入和脱嵌。当锂离子嵌入和脱嵌时,它们会导致电极颗粒晶格发生变化,从而导致体积变化。这些体积变化会导致锂离子电池电极产生机械应力和应变,因此整个电池的厚度会随着充电和放电而变化。本文介绍了一项使用表面贴装应变计现场测量锂离子电池结构变化的研究,以及单元间应变响应差异的表征。然后使用神经网络建模结构来预测动态放电条件下电池的放电深度。
除了栅极计数外,还引入了另一个称为MaxDepth的重要参数。nist将量子攻击限制为固定的运行时间或电路深度。
本文旨在设计具有更好概括能力的单眼深度估计模式。为此,我们进行了定量分析,并发现了两个重要的见解。首先,在长尾分类问题中发现的模拟相关现象也存在于单眼深度估计中,这表明训练数据中深度分布的不平衡分布可能是导致泛化能力有限的原因。第二,深度值的不平衡和长尾分布范围超出了数据集量表,并且在每个单独的图像中也表现出来,进一步表达了单眼深度估计的挑战。通过上述发现,我们提出了距离感知的多专家(DME)深度估计模型。与先前的方法不同地处理不同深度范围的方法不同,DME采用了分歧和诱使哲学,每个专家都负责对特定深度范围内的区域进行深度估计。因此,每个专家看到的深度分布更加统一,并且可以更容易预测。一个像素级路由模块的进一步设计和学会了,以将所有专家的预测缝合到最终的深度图中。实验表明,DME在NYU-DEPTH V2和KITTI上都达到了最先进的性能,并且还可以在看不见的数据集上提供有利的零拍概括能力。
摘要 - 随着自动驾驶和机器人导航的快速进步,对能够估计度量(绝对)深度的终身学习模型的需求不断增长。终身学习方法可能在模型培训,数据存储和收集方面可以节省大量成本。但是,RGB图像和深度图的质量是传感器的,现实世界中的深度图具有特定的特定特征,从而导致深度范围的变化。这些挑战将现有方法限制为具有较小的域差距和相对深度图估计的终身学习。为了促进终生的度量深度学习,我们确定了需要注意的三个至关重要的技术挑战:i)开发一个能够通过尺度感知的深度学习来解决深度尺度变化的模型,ii)设计有效的学习策略来处理明显的域间隙,iii III)为在实践应用中创建一个自动化的解决方案。基于上述考虑因素,在本文中,我们提出了一个轻巧的多头框架,有效地解决了深度尺度的不平衡,ii)一种不确定性的意识到的终身学习解决方案,可熟练处理重要的域域,iii)一种在线域特异性预测方法,以实现实时的预测方法。通过广泛的数值研究,我们表明该方法可以实现良好的效率,稳定性和可塑性,从而使基准测试幅度约为15%。该代码可在https://github.com/ freeformrobotics/lifelong-monodepth上找到。
●室内:参与者使用深度层次或深度层次的碰撞少于布局●roomd:参与者使用depthorlayout少于少于depthorayout少于bic layoutonly●roomf●roomf:参与者使用layoutonly以外的任何模式少碰撞差异●参与者在选择depthandlay的depthandaylaylaylyoutlayly dive <<
糖尿病是一个重要的全球健康问题,导致广泛的发病率和死亡率,对人类健康构成了严重威胁。最近,生物活性脂质分子1-磷酸盐在糖尿病研究领域引起了极大的关注。这项研究的目的是全面了解鞘氨醇1-磷酸调节糖尿病的机制。通过全面的文献计量分析和对相关研究的深入综述,我们调查并总结了各种机制,这些机制通过这些机制,通过这些机制,鞘氨醇1-磷酸在糖尿病前,1型糖尿病,2型糖尿病及其并发症及其并发症(例如糖尿病性肾病,糖尿病性肾病,腹膜病,心脏病,Neuropathy,Neuropathy,Neuropathy,Neuropant,Neuropathy,Neuropathy,Neuropathy,Neuropathy,<),包括但不限于调节脂质代谢,胰岛素敏感性和炎症反应。这项学术工作不仅揭示了在糖尿病治疗中使用鞘氨醇1-磷酸盐的新可能性,而且还为未来研究人员提供了新的见解和建议。
我们对基于有限深度量子电路编码局部哈密顿量的基态的变分量子特征值求解器的精度进行了基准测试。我们表明,在有间隙相中,精度随着电路深度的增加而呈指数提高。当尝试编码共形不变哈密顿量的基态时,我们观察到两种状态。有限深度状态,其中精度随着层数的增加而缓慢提高;有限尺寸状态,其中精度再次呈指数提高。两种状态之间的交叉发生在临界层数处,其值随着系统尺寸线性增加。我们在比较不同的变分假设及其描述临界基态的有效性的背景下讨论了这些观察结果的含义。