本文说明了脑电图(EEG)数据的两个有效源定位算法的开发,旨在增强实时大脑信号重建,同时解决传统方法的计算挑战。准确的EEG源定位对于在认知神经科学,神经康复和脑部计算机界面(BCIS)中的应用至关重要。为了在精确的源方向检测和改进的信号重建方面取得重大进展,我们介绍了加速的线性约束最小方差(ALCMV)波束形成工具箱和加速的大脑源方向检测(AORI)工具箱。ALCMV算法通过利用递归协方差矩阵计算来加快EEG源重建,而与常规方法相比,AORI将源方向检测从三个维度简化了66%。使用模拟和实际脑电图数据,我们证明了这些算法保持高精度,方向误差低于0.2%,并且信号重建精度在2%以内。这些发现表明,所提出的工具箱代表了脑电图源定位的效率和速度的重大进步,使其非常适合实时神经技术应用。
抽象经典,即非量词,通信包括具有多输入多输出(MIMO)通道的配置。一些相关的信号处理任务以对称方式考虑这些通道,即通过将相同的角色分配给所有通道输入,并且与所有通道输出类似。这些任务特别包括通道识别/估计和通道均衡,并与源分离紧密连接。他们最具挑战性的版本是盲人,即当接收器几乎没有关于发射信号的事先知识时。其他信号处理任务以不对称的方式考虑经典的通信通道。这尤其包括当发射器1通过主唱机向接收器1发送数据时的情况,而“入侵者”(包括接收器2)会干扰该通道以提取信息,从而执行所谓的窃听,而重新CEN-CETER 1可以瞄准检测该侵入率。上述处理的一部分
在两种情况下,独特的基因组区域特别感兴趣:从单个哺乳动物靶基因组中提取时,它们对发育基因的高度富集。与密切相关的邻居基因组相比,从靶基因组中提取出来时,它们在诊断标记中高度富集。尽管具有生物学重要性和潜在的经济价值,但独特的地区仍然很难从整个基因组序列中检测出来。在这篇综述中,我们调查了三个有效的程序,以大规模检测独特的区域,Genmap,Macle和fur。我们通过分析模拟和真实数据来解释这些程序,并通过分析它们的应用。可以从GitHub存储库EvolbioInf/确定作为详细教程的一部分中获得搜索唯一区域的示例脚本。
异常检测(AD)代表了一种从根本上进行数据驱动发现的新工具。最初的努力集中在将强大的离线算法调整到这些高通量流系统中,但这种算法应如何适应不断发展的检测器条件的问题仍然是一个重大挑战。在这项工作中,我们引入了一个模块化生态系统,以制定和评估自主发现的策略,其中包含了不同的组件,包括:具有时间依赖性效果的数据集,复杂的触发菜单,实时控制机制和成本感知的优化标准。我们通过使用公共CMS数据集的AD触发器进行了基于强化学习的新基准来说明这一框架,旨在鼓励以社区为导向的发展发展新一代智能和适应性触发器。
全球有超过5500万人受痴呆症影响,每年有近1000万例新病例,阿尔茨海默氏病是一种普遍且具有挑战性的神经退行性疾病。尽管对阿尔茨海默氏病检测的机器学习技术取得了重大进步,但深度学习模型的广泛采用引起了人们对其解释性的关注。在在线手写分析的深度学习模型中缺乏解释性,这在阿尔茨海默氏病检测的背景下是文献中的一个关键差距。本文通过解释应用于多变量时间序列数据的卷积神经网络的预测来解决这一挑战,该预测是由在图形平板电脑上手写的连续循环系列相关的在线手写数据生成的。我们的解释性方法揭示了健康个体和被诊断为阿尔茨海默氏症的人的不同运动行为特征。健康受试者表现出一致,平稳的运动,而阿尔茨海默氏症患者的表现出了不稳定的模式,其标记为突然停止和方向变化。这强调了解释性在将复杂模型转化为临床相关见解中的关键作用。我们的研究有助于提高早期诊断,为参与患者护理和干预策略的利益相关者提供了重要的可靠见解。我们的工作弥合了机器学习预测与临床见解之间的差距,从而促进了对阿尔茨海默氏病评估的高级模型的更有效和可理解的应用。
作为替代方案,SDMA是蛋白质分解的副产品,已成为肾功能的更可靠的指标。SDMA积聚在血液中,因为它不能被代谢,并且主要由肾脏排泄。测量尿液中的SDMA提供了更准确的肾脏健康指标。与肌酐不同,即使轻度肾脏损伤(25-40%损失),SDMA水平也会增加,并且不会受到肌肉质量的显着影响。
抽象的智能移动性和自动驾驶汽车(AV),必须非常精确地了解环境,以保证可靠的决策,并能够将公路部门获得的结果扩展到铁路等其他领域。为此,我们基于Yolov5引入了一个新的单阶段单眼3D对象检测卷积神经网络(CNN),该卷积神经网络(CNN)致力于公路和铁路环境的智能移动性应用。要执行3D参数回归,我们用混合锚盒替换了Yolov5的锚点。我们的方法有不同的模型大小,例如yolov5:小,中和大。我们提出的新模型已针对实时嵌入DED约束(轻巧,速度和准确性)进行了优化,该模型利用了被分裂注意的改进(SA)卷积所带来的改进(称为小型分裂注意模型(SMALL-SA)。为了验证我们的CNN模型,我们还通过利用视频游戏Grand Theft Auto V(GTAV)来引入一个新的虚拟数据集,以针对道路和铁路环境。我们在Kitti和我们自己的GTAV数据集上提供了不同模型的广泛结果。通过我们的结果,我们证明了我们的方法是最快的3D对象检测,其准确性结果接近Kitti Road数据集上的最新方法。我们进一步证明,GTAV虚拟数据集上的预训练过程提高了实际数据集(例如Kitti)的准确性,从而使我们的方法比最先进的方法获得了更高的准确性,该方法具有16.16%的3D平均均衡性精度,而硬CAR检测的推理时间为11.1 MS/rtx 3080 gpu的推理时间为11.1 s/simage。
背景登革热是全球主要的健康问题,由于其有利的气候因素,社会环境状况以及人类流动性的增加,巴西反复发生和严重爆发。准确的登革热案件和爆发风险对于预警系统和有效的公共卫生干预至关重要。传统的预测模型主要依赖于历史案例数据和气候变量,通常忽略了人类运动在病毒传播中的作用。本研究通过将人类流动性数据纳入基于深度学习的登革热预测框架来解决这一差距。方法开发了一种基于LSTM的模型,以预测每周的登革热病例并检测到选定的巴西城市的爆发。该模型整合了历史登革热案例,滞后气候变量(温度和湿度)以及人类移动调整后的进口案例,以捕获时间趋势和空间传播动态。根据三种替代模型评估其性能:(1)仅使用登革热案例数据的LSTM,(2)结合气候变量的LSTM,以及(3)LSTM集成气候和地理邻里效应的LSTM。使用平均值溶质误差(MAE),平均绝对百分比误差(MAPE)和连续排名的概率得分(CRP)评估了预测准确性,而使用准确性,灵敏度,特异性和F1分数评估了爆发分类。结果在登革热案例预测和爆发检测中,提出的提出的迁移率增强的LSTM模型始终超过所有基线。在所有城市中,它都达到了较低的MAE和MAPE值,表明准确性提高,同时也表现出了出色的CRP性能,反映了良好的校准不确定性估计值。在爆发分类中,该模型达到了最高的灵敏度和F1分数,与仅依赖病例趋势,气候变量或地理位置的模型相比,它在检测爆发期间的有效性。结果强调了登革热预测中赋予移动性数据的重要性,尤其是在人口较高的城市中心。
摘要:shot弹枪蛋白质组学已被证明是识别病原体和表征其产生的抗菌耐药基因的有吸引力的替代方法。由于其性能,预计通过串联质谱法对微生物的蛋白质打字将成为现代医疗保健中必不可少的工具。通过培养物学从环境中分离出来的蛋白质型微生物也是开发新生物技术应用的基石。系统性培训是一种新策略,可估计样品中存在的生物体之间的系统发育距离并计算其共同肽的比率,从而改善其对生物量的贡献的定量。在这里,我们确定了基于记录几种细菌的MS/MS数据的串联质谱蛋白观察的限制。使用我们的实验设置的沙门氏菌邦戈里的检测极限为4×10 4菌落形成单元,来自1 ml的样品体积。这种检测极限与每个细胞的蛋白质量直接相关,因此取决于微生物的形状和大小。我们已经证明,细菌通过系统肽学对细菌的鉴定独立于其生长阶段,并且在存在相同比例的其他细菌的情况下,该方法的检测极限不会降解。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是