此软件包提供了相关的摘要,该信息通常由分析师和安全团队手工制作的信息进行狩猎和事件响应。Corelight将实体定义为企业网络元素,例如系统,服务器,用户,域或证书。这些属性可在一组相互关联的日志中获得,这些日志从完整的Corelight日志流进行了汇总以进行快速搜索。此日志集包括有关网络上所有内容的实体信息,从IT设备(笔记本电脑,服务器,电话,打印机)到工业控制系统(ICS)和操作技术(OT)设备(构建自动化,相机和工业控制系统)。
自测试是一种仅基于其经典输入输出相关性来表征任意量子系统的方法,在独立于设备的量子信息处理以及量子复杂性理论中发挥着重要作用。先前关于自测试的研究需要假设系统的状态在仅执行本地测量且无法通信的多方之间共享。在这里,我们用单个计算受限方取代了多个非通信方的设置,这在实践中很难执行。具体来说,我们构建了一个协议,允许经典验证者稳健地证明单个计算受限的量子设备必须准备一个贝尔对并对其执行单量子位测量,直到对设备的状态和测量应用基础变化。这意味着在计算假设下,验证者能够证明单个量子设备内存在纠缠,这是一种通常与两个分离的子系统密切相关的属性。为了实现这一点,我们基于 Brakerski 等人首次引入的技术。 (2018)和 Mahadev (2018) 允许经典验证者约束量子设备的行为,假设该设备不会破坏后量子密码学。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为
众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
Page 2 Vimar Spa- Viale Vicenza,14-36063 Marostica VI-意大利-Www.vimar.com 11/03/2025 Page 2 Vimar Spa -Vimar Vicenza,14-36063 Marostica Marostica VI-意大利 - 意大利 - 意大利 - www.vimar.com 11/03/03/203/2025 >
在GPS和运动特定设备中。FOM SLOT-DIE涂料设备在各个领域的新材料研究中起着至关重要的作用,现在还包括消费电子和电子可穿戴设备。FOM Technologies是
中性原子的阵列被困在光学镊子中 - 可以将原子固定到位的高度集中的激光束 - 是构建量子处理器的越来越流行的方式。中性原子的这些网格,当以特定序列激发时,可以将复杂的量子计算缩放到数千个Qubits。但是,它们的量子状态是脆弱的,可以很容易被破坏 - 包括光子设备,旨在以光子的形式收集其数据。
在过去的二十年中,Quantum Internet [1]和量子计算的实施已经有很大的推动。已经研究了这些量子技术的不同构件:量子记忆和中继器[2,3],单光子源[4],量子门和接口[5]。接口所有这些组件的研究最多的系统之一是光子[6]:它们可以在室温下进行操作而无需折叠,可以通过具有最小的损失的标准光学纤维网络传输,并提供了许多自由度来编码信息,例如。极化,频率或相位。选择编码方案时,可以优先使用高维方案,因为它具有许多优势,例如量子密钥分布和更高的信息率的更高安全性[7 - 10]。编码高维量子信息的最健壮的方案之一是时间模式,因为它们可抵抗纤维中的分散,并且自然提供了高维基集。在此方案中,信息是按照红外波长的时间自由度来编码的,然后通过FILER网络路由到不同的设备或用户。要在这些时间模式中读取量子信息,一个量子接口可以单独解决输入信号的每个时间模式,即以单模操作为特征,然后是必要的。近年来,量子脉冲门(QPG)[11]的上升是一种理想的单模界面,以操纵光的光模式。但是,终极多亏了可重新发现的单模传输函数,QPG可以从输入信号中选择单个时间模式;通过总和频率产生(SFG)过程将所选模式上转换为较短的波长,并且信号正交的部分与传输函数的部分保持不转化。以这种方式,QPG设备自然满足了量子接口的两个独立关键要求:它允许在不同波长下运行的量子光学设备进行通信,并利用时间模式来进行量子通信,计算和计量学。QPG的单模操作已经成功地用于许多应用程序[5],例如在量子状态层析成像[12]中,光谱带宽压缩到界面不同的量子系统[13]和量子计量学[14,15]中。为了进一步开发这些演示,以对日常应用,效率和纯粹的单模,其中包括空间和时间,操作至关重要。
发光的太阳能集中器是可能用于建筑窗口的透明光伏模块。要存储由它们产生的能量,需要一个单独的储能模块和电压调节器模块,但是很明显,该配对对于应用来说是笨拙的。为了解决这个问题,我们提出了“面对面”发光太阳能集中器和电染色器超级电容器的“面对面”串联整合。在这种情况下,不需要分离的储能模块和电压调节器模块,因为阳光下的浓缩器产生的电能可以由具有匹配的电压窗的超级电容器直接存储。带电的储能模块可用于提供低功耗设备。此外,在不同的储能状态下,电致色素超级电容器在不同的储能状态下显示出可调节的平均可见传输,这使集成设备有趣的是自动化的电致智能智能窗口或展示设备。作为一个例子,准备了一个自动的信息指令显示,并且可以以可控的方式清楚,迅速地显示文本消息。能够进行光伏转换,能量存储和电化色的集成设备是智能窗口的有前途的替代方案。