摘要量子达尔文主义的理论旨在解释我们的客观经典现实是如何从量子世界中产生的,它是通过分析涉及量子系统的信息的分布,该量子系统可访问多个观察者,这些观察者可以通过拦截该系统来拦截该系统的环境片段。先前的工作表明,当环境碎片的数量增长时,建模从系统到观察者的信息流的量子通道变得越来越接近 - 按照钻石规范距离的术语 - 以“测量和播放”通道,从而确保可观察到的客观性;收敛是由钻石标准距离上的上限形式化的,该距离随着碎片数量的增加而降低。在这里,我们在有限尺寸的量子系统的客观性中得出了更严格的钻石规范范围,提供了一种可以在有限次和有限二维的情况下桥接的方法。此外,我们通过考虑纯损耗通道给出的系统环境动力学的特定模型来探测边界的紧密度。最后,我们概括为有限的维度,这是品牌〜Ao等人获得的结果(2015Nat。社区。6 7908),它提供了量子不和谐的操作表征,从与许多当事方的相关性的单方面重新分布。我们的结果提供了一个统一的框架,可以定量基准在量子到古典过渡中的客观性上升。
近年来,金刚石中的氮空位 (NV) 中心已经成为一个类似原子的系统,在精密测量、量子信息处理和量子基础研究方面有许多应用。在本文中,我们重点研究了 NV 中心作为光激发和局部温度传感的函数的特性。为了证明 NV 中心对基础科学研究和技术应用的巨大潜力,对 NV − 缺陷中心,特别是在各种光激发下的了解仍然不足。在本文中,我们探讨了影响 NV − 中心 ODMR 信号的几个因素,例如微波辐射源的功率、磁场强度、光激发强度和光学系统的检测效率。用于这些实验的光谱方法称为光学检测磁共振 (ODMR)。实验旨在测量不同类型样品在不同光激发强度下NV − 中心的对比度特性,并通过能级模拟模型估计能级间的布居分布,从而得到实验结果。这些观察结果和模型为理解不同光激发下NV 中心成像的对比度分析提供了良好的理解,也为改进NV − 检测奠定了基础。之后,利用实验所得知识,采用第 3 1 章中提出的无背景成像技术,该方法被用于绘制神经元细胞培养中接种的纳米金刚石的图像。为了了解不同光激发强度下NV − 中心对比度的一般特征,对多个单晶样品进行了实验,并在第 4 章中报告了实验结果。第 5 章研究了NV − 中心的温度检测特性。介绍了一种称为跳频法的新方法来检测所需表面的局部温度变化。该方法首先在单晶金刚石样品上进行测试,然后在纳米金刚石上进行测试。最后,该技术被应用于测量局部温度变化的实际问题
在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比
巴黎,2020 年 4 月 6 日 将影响力融入基础设施投资战略和运营中 Meridiam 和 ENEA Consulting 在过去 4 年中一直保持合作,致力于发现和降低低碳转型领域的新投资机会风险,并为 Meridiam 设计独特的“影响力”框架,以支持其在可持续基础设施方面的投资理念。以下是我们了解到的基础设施投资影响力和财务绩效之间的互补性。在全球范围内开发和投资高影响力基础设施是未来几十年的主要挑战之一,也是实现可持续未来的条件。现在就有必要且可以采取行动。市场已经为高影响力基础设施做好了准备,特别是为应对当前的健康和经济危机提供即时但可持续的应对措施。可持续性和基础设施:长期相互关联
diya Zhu 1 carmanah D.Hunter 1 samuel R.Baird 1│BradleyR. Davis 2│Allyson Bos 2│Stephen J.灰色2.3│Stephen A. Westcott 1
2017 年 3 月,发布了新版风能发电系统国际标准 IEC 61400-12-01 [1]。第 12-1 部分涉及发电涡轮机的功率性能测量。在附件 G.2 单个顶部安装风速计和 G.4 现场安装仪器中,标准规定:“风速计应安装在一个圆形垂直管上,该管的外径与校准(和分类)时使用的外径相同(± 0.1 毫米),但不得大于风速计主体的直径。”对于不锈钢管的生产,DIN EN 10217 [2] 对焊接管外径规定了不同的公差等级。最精确的等级称为 D4,允许直径在 ± 0.5 % 以内,最小为 ± 0.1 毫米。因此,外径在 30 mm 和 40 mm 之间的管的允许公差在 ± 0.15 mm 和 ± 0.2 mm 之间。常用钢管的公差甚至更大,为 ± 1.0 %,最小为 ± 0.5 mm。这些值超过了新 IEC 标准中给出的规格。购买符合 IEC 标准规格的风速计安装管可能是一项艰巨的任务。在本研究中,评估了安装管直径变化对风速计测量结果的影响。这项研究是与 Adolf Thies GmbH & Co. KG 合作完成的。Thies 为这项研究提供了四种不同直径的安装管。管直径
营养不良肌肉中的病理过程包括明显的变性和肌肉纤维的再生。这些过程可以通过测量肌肉纤维的直径以及确定具有集中核的肌肉纤维的比例(指示肌肉再生)。所描述的方法依赖于通过使用肌肉纤维横截面的最小“ FERET直径”来说明肌肉纤维尺寸的确定。与肌肉纤维尺寸的其他形态计量参数不同,最小的“ Feret直径”在实验误差(例如截面角的方向)上非常健壮。此外,在一组代表性的肌肉中,最小的“ FERET直径”可靠地区分营养不良和正常表型。如果不可能评估最小的“ Feret直径”,则建议提出替代参数。此外,将集中核的百分比确定为指示营养不良肌肉再生的量度。一旦可以使用整个肌肉的数字图像,就可以轻松实现其他测量参数(例如总肌肉横截面区域)。与其他染色程序结合使用,可以通过对系统进行少量修改来评估其他病理参数(例如坏死区,巨噬细胞浸润等。)。
_____ FOUNDATION /_---- ---x--- -SEE STANDARD / I '', PLAN J-26.10 // ................ ------·---------- .... _ ',, ' / ' / /,.,..--, \ ~(!ffi): I- \ \ .. - ........ _ .// // / < / div>