4.09 PM马来西亚Pannirselvam先生Velu先生Caso资源优化SDN BHD主题:革命性的汽车内空气质量:使用UVA LED和CO 2 DISC 2减少
Course ID and Title: [EE508, Hardware Foundations of Machine Learning ] Units: 4 Term—Day—Time: [Spring 2025] — [Lecture Saturday 12:30-4:10pm – Discussion: TBD] Location: TBD Instructor: Arash Saifhashemi Office: TBD Office Hours: TBD Contact Info: saifhash@usc.edu Teaching Assistant: TBD Office: TBD Office Hours: TBD Contact信息:TBD目录描述ML内核:卷积,变压器,嵌入。加速器:GPU,输入/重量/输出固定加速器。分布式ML:数据,模型和混合动力并行。私人ML:同态加密和多方计算加速器。课程描述本课程为有兴趣建筑机器学习(ML)硬件和系统的ECE(电气和计算机工程)学生提供了独特的观点,例如图形处理单元(GPU)和加速器,以及设计可扩展的ML系统,例如基于云的ML ML培训和推动力。本课程向学生介绍了ML模型中通常看到的计算和内存访问内核,包括卷积,变形金刚和嵌入表。学生将学习如何将卷积转换为矩阵操作以及如何加速这些矩阵操作在硬件加速器上。它为ML加速器提供了3种不同的硬件设计范例:输入,输出和权重固定加速器。它对市场上ML硬件加速器(例如GPU和Tensor处理单元(TPU))提供了深入的了解。该课程还介绍了如何使用模型,数据和混合并行性等并行化方法扩展ML系统。该课程将使学生能够了解机器学习中的隐私基础知识,以及如何使用同型加密和多方计算来加速私人ML系统。
摘要:在汽车工程领域的制动系统对于维持车辆的性能,稳定性和安全性至关重要。盘式制动器是制动机制最流行的形式之一,因为它在各种驾驶情况下具有有效的停止力和可靠性。尽管如此,工程师一直在寻找新的创造性方法来改善盘式制动设计,这是他们不断寻求提高车辆性能和效率的一部分。盘式制动器修改提供了一种可行的方法来实现某些性能目标,例如增加耐用性,减轻体重,更好的热管理和改善的结构完整性。通过定制盘式制动组件设计和材料,工程师可能能够达到前所未有的安全性,寿命和制动效率。关键词:盘式制动,热通量,压力,变形,盘状轮廓,优化。
a 意大利帕多瓦大学医学系 - DIMED b 意大利帕多瓦帕多瓦大学医院病理学系 c 意大利特雷维索 Marca Trevigiana ULSS2 医院病理学系 d 意大利帕多瓦威尼托肿瘤研究所 IOV-IRCCS e 意大利帕多瓦帕多瓦大学医院外科、肿瘤学和胃肠病学系(DiSCOG)普通外科 3 f 意大利维罗纳大学与医院信托病理学科诊断与公共卫生系 g 意大利热那亚大学外科科学与综合诊断学系(DISC)解剖病理学 h 意大利热那亚 IRCCS Ospedale Policlinico San Martino,意大利热那亚大学外科科学与综合诊断学系(DISC) i 病理学研究单位,Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, 福贾, 意大利
目的。我们为 X 射线照射吸积盘的宽带光谱能量分布 (SED) 开发了一种新的物理模型,该模型考虑了吸积盘和 X 射线冕的相互作用,包括由中心黑洞 (BH) 的强引力对光传播和光子能量从盘到冕静止坐标系或从冕静止坐标系到观察者的转换引起的所有相对论效应。方法。我们假设一个开普勒光学厚、几何薄的吸积盘和一个灯柱几何中的 X 射线源。X 射线冕发射各向同性的幂律类 X 射线谱,具有高能截止。我们还假设标准盘模型最内层热辐射释放的所有能量都被传输到冕,从而有效冷却该区域的盘。此外,我们还包括由于 X 射线源对圆盘照明的吸收部分进行热化而导致的圆盘加热。还包括由于圆盘照明而导致的 X 射线反射。X 射线光度由从吸积盘(或外部源)提取的能量和散射光子本身带来的能量给出,因此能量平衡得以保持。我们通过迭代过程计算了低能 X 射线截止,充分考虑了圆盘的 X 射线照明与进入日冕的吸积盘光谱之间的相互作用。我们还计算了日冕半径,考虑到康普顿化过程中光子数的守恒。结果。我们详细讨论了模型 SED 及其对系统参数的依赖性。我们表明,圆盘-日冕相互作用对产生的 SED 有深远的影响,它限制了 X 射线光度并改变了 UV 蓝色凸起的形状和正常化。我们还将模型 SED 与目前可用的类似模型预测的 SED 进行比较。我们使用新代码来拟合 NGC 5548 的宽带 SED,这是一个典型的 Seyfert 1 星系。当与之前模型拟合同一源的光学和紫外线时间滞后的结果相结合时,我们推断出黑洞自旋较高、系统倾角中等、吸积率低于爱丁顿的 10%。该源的 X 射线光度可能由圆盘中耗散的 45-70% 的吸积能量支持。新模型名为 KYNSED ,可供公众使用,用于在 XSPEC 光谱分析工具中拟合 AGN SED。结论。 AGN 吸积盘的 X 射线照射可以解释至少一个 AGN(即 NGC 5548)观测到的 UV 和光学时间滞后以及宽带 SED。过去几年中,我们利用多波长、长期监测观测同时研究了这些 AGN 的光学、UV 和 X 射线光谱和时间特性,这将使我们能够研究这些系统中的 X 射线和吸积盘几何形状,并限制其物理参数。
摘要当隧道钻孔机(TBM)遇到以“三个高点”(高轴承压力,高强度和高石英含量)为特征的极端地质条件时,TBM圆盘切割器的整体切割性能大大降低。本文提出了一种激光辅助岩石破坏方法,以提高椎间盘碎石破裂的效率,并引入了一种模拟建模方法,以减轻与对激光辅助盘的椎间盘切割器碎石破裂相关的风险和实验成本。以花岗岩中的激光钻孔辅助尺度切割器穿透者为例,协同模拟和实验是在不同的切割孔距离距离进行的,给定的孔孔距离为2mm。通过宏观岩石碎片,岩石破裂和特定的能量讨论了该方法的可行性和有效性。结果表明,激光孔的存在促进了圆盘切割器破裂的岩石,当切割孔距离距离为5 mm时,其最佳效果。
为了优化服务寿命和破裂性碟片性能,大陆光盘制造和测试每个LotRX破裂盘订单,可根据您的应用程序要求可压缩或不可压缩的缓解条件。LotRX破裂盘仅针对可压缩(气/蒸气)的浮雕条件进行制造和测试,在不可压缩的(液体)应用中可能无法正常工作。如果存在可减轻不可压缩媒体的情况,或者仅适用于可压缩媒体
在本研究的第一阶段,对仪表旋启式止回阀进行了大量的测试,以确定阀瓣在各种上游流动扰动(弯头、减速器、蝶阀和多孔孔板作为高湍流源)下的稳定性,涵盖了两种不同阀门尺寸(3 英寸和 6 英寸)的各种阀瓣停止位置(50 到 75 度)和流速(高达 20 英尺/秒)。第一阶段的研究导致了上游流动扰动因素的发展,应将这些因素考虑在内,以确定实现稳定、完全打开的阀瓣位置所需的最小速度。测试矩阵还量化了当这些最小速度要求不满足时可能出现的阀瓣波动的严重程度。第一阶段研究的结果发表在 NUREG/CR-5159 中。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。