在大坝管理和大坝可靠性评估中出现的首要问题之一是悬浮颗粒的沉积。沉积影响能源生产和效率,储存,排放能力和洪水衰减能力。在本文中,使用有限体积方法(FVM)软件ANSYS对大坝溢洪结构中的沉积物传输和冲刷进行建模。根据离散相模型(DPM)制定了水流中悬浮颗粒的轨迹。为了访问仿真模型,使用缩放的大坝溢洪道模型进行了粒子图像速度法(PIV)实验。从模拟和PIV实验获得的发现之间的差异小于4.89%,推断数值模型是可以接受的。发现最大搜查率和最大沉积速率分别为4.20×10-9 kg/s和2.00×10-6 kg/s。因此,基于唯一考虑解决悬浮颗粒的搜查和沉积,应每8.9年进行一次每8.9年的水坝维护。这项工作证明了在研究中基于DPM的数值模拟的生存能力,在研究沉积物传输问题的流体相互作用中,尤其是用于应用大坝可靠性。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
阿尔茨海默病 (AD) 是全球范围内日益严重的重大公共卫生挑战。早期准确诊断对于有效干预和治疗至关重要。近年来,人们对利用脑电图 (EEG) 来提高 AD 检测率的兴趣日益浓厚。本文重点介绍图信号处理 (GSP) 技术的应用,使用图离散傅里叶变换 (GDFT) 分析 EEG 记录以检测 AD,方法是采用多种机器学习 (ML) 和深度学习 (DL) 模型。我们基于公开的 EEG 数据评估我们的模型,该数据包含 88 名患者,分为三组:AD、额颞叶痴呆 (FTD) 和健康对照 (HC)。痴呆与 HC 的二元分类最高准确率达到 85%(SVM),而 AD、FTD 和 HC 的多类分类最高准确率达到 44%(朴素贝叶斯)。我们提供了用于检测 AD 的新型 GSP 方法,并形成了进一步实验的框架,以在多种数据模式的其他神经退行性疾病背景下研究 GSP,例如重度抑郁症、癫痫和帕金森病中的神经影像数据。
本文表达的观点为作者本人观点,不代表美国国防部、美国政府、作者所属的任何其他机构或美国国家经济研究局的官方政策或立场。特别感谢 Denvil Duncan、Seth Freedman、David R. Henderson、Thomas J. Kniesner、Lisa Robinson、Justin Ross、W. Kip Viscusi、Dan Sacks 以及美国经济协会、成本效益分析协会和南方经济协会会议、内华达大学拉斯维加斯分校、圣地亚哥州立大学和海军研究生院的研讨会参与者提供的有益评论。作者要感谢 Regenstrief Institute, Inc.,尤其是公共关系团队和生物医学信息学中心在疫情期间对此项非资助研究项目的支持。还要感谢研究团队成员 Shaun Grannis、Monica Kasting、Jon Macy 和微软新闻团队在开发和实施横幅广告方面提供的支持(Mary L. Gray、Vera Chan、Juan Lavista Ferres、Matt Lindenburg 和 Erin Van Noy)以及微软研究健康未来小组的 Mandi Hall。我们感谢 Ashley Wiensch 提供的行政支持。
最小化可编程逻辑器件和专用处理器微电子器件上离散信号频率选择数字算法硬件和软件实现的硬件成本[1]。这些任务可以而且应该通过最少算术乘法运算的级联数字滤波方法和不执行算术乘法运算的多频带数字滤波(MDF)方法来解决[2],[3],[4]。最少算术乘法运算的计算级联数字滤波算法可以基于幅频特性(AFC)具有对称性的NDF、基于Walsh NDF或基于齐次和三角数字滤波器来实现[5]。没有算术乘法运算的计算MDF算法可以而且应该在低位系数的NDF基础上、在低位系数的差分数字滤波器(DDF)基础上、或在整数系数的DDF基础上实现[6],[7]。对于采样周期为 T 的 MDF 复信号 {х(nТ)},使用低通数字滤波器 (LDF) 的此类算法,仅需在 𝑛ൌ0,1,2…𝑁െ1 处添加和移位其第 n 个时间样本即可执行信号的 N 点离散傅里叶变换 (DFT) [8]。本研究的目的是比较分析离散信号的频率选择数字方法,以构建其无需算法乘法运算的算法,并确定在不执行算术乘法运算的情况下将此类方法用于离散信号的多级 DFT 的必要和充分条件 [9],[10]。该研究使用了具有最少数量的算法乘法运算的级联数字滤波算法和不执行算法乘法运算的 MDF 的计算程序 [11],[12]。此类算法的比较分析结果以及硬件和软件建模已经证明并减少了硬件
概率图形模型(PGM)紧凑地编码一组随机变量的完整关节概率分布。PGM,并已成功地用于计算机视觉中(Wang等,2013),误差校正代码(McEliect等,1998),生物学(Durbin等,1998)等(Durbin等)等。在本文中,我们专注于离散的PGM。对具有可牵引因子1的离散PGM进行近似后验推断的标准方法涉及诸如循环信念传播(LBP)之类的消息通讯算法(Pearl,1988; Murphy等,1999)。lbp在变量和因子图的因子之间传播“消息”。,尽管过去进行了几次尝试(请参阅第2节),但没有建立良好的开源Python软件包可以实现效率和可扩展的LBP用于一般因子图。关键挑战在于设计和操纵Python数据结构,该数据结构包含LBP消息,用于支持具有任意拓扑的大型因子图和
摘要 本研究的新发现揭示了情绪唤起与神经功能大脑连接测量之间的高度关联。为此,使用由图论分离(聚类系数、传递性、模块化)和大脑网络集成(全局效率、局部效率)测量驱动的支持向量机(SVM)对对比离散的情绪状态(快乐与悲伤、有趣与厌恶、平静与兴奋、平静与愤怒、恐惧与愤怒)进行分类。从名为 DREAMER 的公开数据库下载由短时间视频影片片段介导的情绪 EEG 数据。已经检查了皮尔逊相关性(PC)和斯皮尔曼相关性,以估计整个皮质中相对较短(6 秒)和较长(12 秒)不重叠 EEG 段之间的统计依赖关系。然后,将编码为图形的相应大脑连接根据两个不同的阈值(60% 最大值和平均值)转换为二进制数。根据变量(依赖性估计、片段长度、阈值、网络测量),使用单因素方差分析和逐步逻辑回归模型,获得对比情绪之间的统计差异。当将 PC 应用于较长的片段并按照特定阈值作为平均值时,组合整合测量可提供最高的分类准确率 (CA) (75.00% 80.65%)。分离测量也提供了有用的 CA (74.13% 80.00%),而两种测量的组合则没有。结果表明,即使分离和整合测量都因视频观看过程中神经递质释放导致的视听刺激的唤醒分数而变化,离散的情绪状态仍以平衡的网络测量为特征。
使用离散数据(例如简化的分子输入线 - 输入系统(Smiles)字符串)的从头生成的深层生成模型吸引了药物设计中的广泛关注。然而,训练不稳定经常困扰生成的广告网络(GAN),导致可能崩溃和低偏移性等概率。这项研究提出了一个纯粹的变压器编码器GAN(宽度)来解决这些问题。宽度的发电机和鉴别剂是变压器启动器的变体,并与加固学习(RL)结合使用,以生成具有所需化学特性的分子。此外,变体微笑的数据增强是为了学习微笑字符串的范围和语法的宽度培训。在方面,我们引入了一个增强的田纳州的变体,称为十(w)gan,其中包含了微型批处理歧视,并提高了生成分子的能力。对QM9和锌数据集的实验结果和消融研究表明,所提出的模型以计算有效的方式产生了具有所需化学性质的高效和新颖的分子。
摘要简介:过去几十年来,华氏巨球蛋白血症 (WM) 的治疗方案迅速增多。然而,对于首选治疗方法尚无共识。因此,患者的偏好在制定个性化治疗计划时变得越来越重要。然而,WM 患者对其治疗方案的优先考虑和观点仍不清楚。我们使用离散选择实验 (DCE) 评估了 WM 患者的治疗偏好。方法:采用混合方法来识别和选择属性/级别。DCE 问卷包括五个属性:药物类型(靶向治疗与化疗);给药频率和途径;5 年无进展生存期 (PFS);不良事件;继发性恶性肿瘤风险。正交设计和混合 Logit 面板数据模型分别用于构建选择任务和评估患者偏好。结果:330 名 WM 患者参与了该项目。总共有 214 份(65%)完整的问卷被纳入数据分析。 5 年 PFS,其次是继发性恶性肿瘤风险,是做出治疗选择的最重要因素。至于副作用,患者选择避免