议程项目分配预估。下表提供了科学和技术小组委员会第 62 届会议议程项目的预估分配。由于小组委员会力求高效利用时间,这意味着会议不会为了遵循这一时间表而暂停,因此需要注意的是,这些时间分配只是近似值,可能会发生变化。根据讨论的演变性质、延长的审议或影响会议的其他动态因素,用于审议每个议程项目的实际时间可能会有很大差异。请各代表团注意,可能需要调整时间表。暂定时间表仅供参考,对秘书处或主席不具约束力。
MSCA博士网络2023 Ideal4Green项目的目标旨在通过创新的微电网技术开创分散的能源解决方案,以实现全球脱碳目标。理想4Green项目解决了气候变化的紧迫挑战以及全球向可持续能源系统转变。它的重点是开发和整合微电网,这对于管理可再生资源的可变性至关重要,雅典国家技术大学成立于1837年,是希腊最古老的技术大学,是工程,建筑,建筑和应用科学领域。NTUA 以学术严谨和创新研究而闻名,对希腊的经济和工业发展产生了重大影响。 其电力部门着重于电力工程,提供可再生能源,高压系统和能源计划的课程,实验室工作以及研究。 该部门灵活地运作,将四个自主实验室团结起来,以推动电力教育和研究方面的进步。 Protasis Engineering&Consulting S.A.,于2002年在雅典成立,专门研究电力系统咨询和系统集成,以保护,控制,监测和自动化。 具有可再生能源整合,微电磁性,智能计量,电子机动性和网络安全方面的专业知识,Protasis提供了创新的工程解决方案,并遵守国际质量和可持续性标准。以学术严谨和创新研究而闻名,对希腊的经济和工业发展产生了重大影响。其电力部门着重于电力工程,提供可再生能源,高压系统和能源计划的课程,实验室工作以及研究。该部门灵活地运作,将四个自主实验室团结起来,以推动电力教育和研究方面的进步。Protasis Engineering&Consulting S.A.,于2002年在雅典成立,专门研究电力系统咨询和系统集成,以保护,控制,监测和自动化。具有可再生能源整合,微电磁性,智能计量,电子机动性和网络安全方面的专业知识,Protasis提供了创新的工程解决方案,并遵守国际质量和可持续性标准。
量子密钥分发 (QKD) 允许两个用户之间以无条件的安全性进行密钥交换。要广泛部署 QKD,低成本和紧凑性是高性能的关键要求。目前,大多数 QKD 系统都依赖于体强度和相位调制器来生成具有精确定义的幅度和相对相位差的光脉冲 - 即将信息编码为信号状态和诱饵状态。然而,这些调制器价格昂贵且体积庞大,从而限制了 QKD 系统的紧凑性。在这里,我们提出并通过实验演示了一种新颖的光发射器设计,通过以 GHz 时钟速度生成强度和相位可调的脉冲来克服这一缺点。我们的设计通过采用直接调制激光器结合光注入锁定和相干干涉,消除了对体调制器的需求。因此,该方案非常适合小型化和光子集成,我们实施了原理验证 QKD 演示以突出潜在应用。
7/29/2024 1004 Genesis Fam Health- GC Rosalinda Bonilla 620-275-1766 RREXROAT@GENESISFH.ORG 7/29/2024 1004 Genesis Fam Health- GC Rosalinda Bonilla 620-275-1766 RREXROAT@GENESISFH.ORG 7/29/2024 6482 Genesis Fam Health- DC Luis de Luna 620-225-6821 luis.deluna@genesisfh.org 7/29/2024 6482 Genesis Fam Health- DC Luis de Luna 620-225-6821 luis.deluna@genesisfh.org 7/29/2024第6482章620-225-6821 luis.deluna@genesisfh.org 7/29/2024 6482 Genesis Fam Health- DC Luis de Luna 620-225-6821 luis.deluna@genesisfh.org 7/29/2024 0020 迪凯特 CHD Stacey Hileman 785-475-8118 shileman@dccoks.org 11/5/2024 0091 谢尔曼 CHD Kacey Gray 785-890-4888 kgray@shermancountyks.gov Fluzone U8518DA PMC 100 6/30/2025 7/29/2024 0020 迪凯特 CHD Stacey Hileman 785-475-8118 shileman@dccoks.org 2024 年 7 月 29 日 6523 斯科特城诊所 Lindsey Schmitt 60-872-2187 lidsays@scotthospital.net
fi g u r e 2研究中观察到的范围偏移概述。(a)研究中存在的原始存在和不存在数据以及存在估计值的后中值。原始观测图上的红点/正方形显示原始物种的检测,而黑点/正方形显示非探测。点代表ebird数据记录,正方形代表Bird Atlas Records。模型估计图中的颜色梯度图显示了该模型估计的存在的可能性,其中更多的黄色表示存在的概率更高。深蓝色和深紫色概述了与示例物种相对应的范围变化的数量。深蓝色:Kori Bustard(Ardeotis kori);深紫色:von der Decken的Hornbill(Tockus deckeni)。(b)在1980 - 1999年和2000- 2020年之间,单个物种范围移动的相对变化因子分为总范围变化,有意义的收缩分数和有意义的扩张得分。y轴上的值以线性尺度表示。1的相对变化因子对应于收缩或扩张(损失或获得等于机会区域的区域)的无意义变化,而总范围变化没有变化(1980- 1999年的范围等于2000 - 2020年的范围)。一个相对变化因子为2,对应于面积的两倍,而面积减半的系数为0.5。
摘要 - 生成扩散模型(GDMS),在对各种域的复杂数据分布进行建模方面取得了显着的进步。与此同时,深度加固学习(DRL)在优化Wi-Fi网络性能方面已显示出重大改进。Wi-Fi优化问题对于数学上的模型来说是高度挑战性的,DRL方法可以绕过复杂的数学建模,而GDMS在处理复杂的数据建模方面表现出色。因此,将DRL与GDM相结合可以相互增强其功能。Wi-Fi网络中当前的MAC层访问机制是分布式协调函数(DCF),它在大量端子中大大降低了性能。在这项研究中,我们提出了深层扩散确定性策略梯度(D3PG)算法,该算法将扩散模型与深层确定性策略梯度(DDPG)框架集成在一起,以优化Wi-Fi网络性能。据我们所知,这是在Wi-Fi性能优化中应用这种集成的第一项工作。我们提出了一种基于D3PG算法的共同调整争议窗口和聚合框架长度的访问机制。通过模拟,我们证明了这种机制在密集的Wi-Fi方案中显着优于现有的Wi-Fi标准,即使用户数量急剧增加,也保持了性能。
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。
作者非常感谢以下个人和组织提供的宝贵意见和反馈:法国银行的 Nicolas Barbaroux;加拿大银行的 James Chapman;欧洲证券和市场管理局的 Anne Chone;波兰国家银行的 Adam Głogowski 和 Pawel Gasiorowski;CONSOB 国家银行的 Daniela Gariboldi;意大利银行的 Giuseppe Grande 和 Ilaria Supino;希腊银行的 Eleftheria Kostika;瑞士国家银行的 Sylvie Golay Markovich 和 Laura Felber;比利时 FOD Financiën - SPF Finances 的 Ariane Meunier;英国财政部的 Fayyaz Muneer、Tom Duggan 和 Dylan Cunningham;斯洛文尼亚银行的 Borut Poljšak;美国财政部的 Paull Randt 和 Irina Leonova; María Antonieta Campa Rojas,墨西哥银行;Necmettin Mete Sakallioglu,土耳其财政和财政部;Mai Santamaria 和 Jefferson Vieira,爱尔兰财政部;Ivan Keller 和 Naisa Baldissera May,欧盟委员会金融信息和市场管理局总司;Kris Nathanail,国际证监会组织;Denise Garcia Ocampo,国际清算银行。
摘要 本文介绍了从高空平台 (HAP) 部署量子密钥分发 (QKD) 的可行性研究,以此作为保护未来通信应用和服务的一种方式。本文全面回顾了最先进的 HAP 技术,并总结了 HAP 可以为 QKD 服务带来的好处。本文提供了详细的链路预算分析,以评估从飞行高度为 20 公里的平流层 HAP 提供 QKD 的可行性。结果显示,在大多数操作条件下都有充足的链路预算,这带来了使用发散光束的可能性,从而简化了 HAP 和地面上光学系统的指向、采集和跟踪,有可能扩大 QKD 可能成为可行解决方案的未来用例范围。
尚未就Ban -Gladesh的Chiropteran Fauna的状态和分布进行全面研究。根据国际自然保护联盟(IUCN)孟加拉国的一份报告,已经确定了35种BAT物种,其中18种将其中18种归类为数据不足(IUCN Bangladesh 2015)。自从评估以来,已经将另外八种蝙蝠种添加到国家清单中:河马兰卡迪瓦(Kellart,1850年),希波斯德罗斯·波莫纳(Hipposideros Pomona)(K. Andersen,1918年),rhinolophus pusillus(Temminck,Temminck,1834),pipisterlus javanicus(1834) 1911年),Coelops Frithii(Blyth,1848年),Rhinolophus Luctus(Temminck,1834年)和Hipposideros Armiger(Hodgson,1835)(Saha等人2015,2017a,2017b,2017c,2021; Mia等。2019;艾哈迈德等。2020; Aziz等。2024)。最近Ul Hasan和Kingston(2022)系统地回顾了孟加拉国蝙蝠的多样性和分布。他们确认了31种蝙蝠,并指出,由于其确认的邻国分布,预计在孟加拉国有43种(其中38种(其中38种)将发生。在孟加拉国的记录物种中,河马家族构成六种:Hippo-Sideros Pomona,Hipposideros larvatus(Horsfield,1823年),Hipposideros Lankadiva,Hipposideros cineraceus cineraceus(Blyth)Hipposdieros Grandis已经从中国,缅甸,泰国和越南记录下来(Bates等人2016)。2022)。2022; Bates等。2016)。2024)。Hipposideros Grandis,Grand Leaf-Shosed Bat,自2006年以来一直被视为一种独特的物种(Thabah等人2006),但此后被认为是与幼虫组相处的(Yuzefovich等人。该物种的分类状态需要进一步澄清,以将其与“幼虫物种复合物”中的其他分类单元区分开,并定义其分布范围(Yuzefovich等人。最近从孟加拉国的Bandarban Sadar Upazila录制了H. Grandis(Aziz等人在本研究中,我们从孟加拉国的Baraiyadhala国家公园扩展了该物种最西端的分布。