水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
Bennett,C。H.&Brassard,G。量子密码学:公共密钥分布和硬币折腾。理论。计算。SCI。 560,7-11(2014)。 Dynes,J。F.等。 剑桥量子网络。 NPJ量子。 inf。 5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。SCI。560,7-11(2014)。 Dynes,J。F.等。 剑桥量子网络。 NPJ量子。 inf。 5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。560,7-11(2014)。Dynes,J。F.等。 剑桥量子网络。 NPJ量子。 inf。 5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Dynes,J。F.等。剑桥量子网络。NPJ量子。inf。5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。5,101(2019)。Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。nat。社区。8,15043(2017)。Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Duan,L.-M。,Lukin,M。D.,Cirac,J.I。&Zoller,P。与原子集合和线性光学元件的长距离量子通信。自然414,413–418(2001)。lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。物理。修订版Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Lett。108,130503(2012)。Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。理论。物理。75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。物理。修订版A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。双场类型量子密钥分布协议的简单安全证明。NPJ量子。inf。5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。5,64(2019)。Currás-Lorenzo,G。等。双场量子密钥分布的紧密有限键安全性。NPJ量子。inf。7,22(2021)。Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Wang,S。等。双场量子键分布超过830 km纤维。nat。光子学16,154 - 161(2022)。Zhou,L.,Lin,J.,Jing,Y。和Yuan,Z。Twin-twin-field量子键分布,无光频率传播。自然通讯,14(1),p.928(2023)
智能技术(Duan 等人 2019;Dubey 等人 2020;Hughes 等人 2019;Ismagilova 等人 2019;Wamba 和 Queiroz 2020)。数字化转型中技术的使用取决于组织对技术的态度、感知有用性和感知易用性(Berlak 等人 2020;Grover 等人 2019c)。组织已积极参与数字化转型(Burton-Jones 等人 2020)。人工智能和大数据共同塑造了经济、社会和政治领域(Duan 等人 2019;Dwivedi 等人 2019;Elish 和 Boyd 2018;Wamba 等人 2015、2017)。人工智能被定义为系统解释和学习数字痕迹的能力(Haenlein 和 Kaplan 2019)。Metcalf 等人(2019)认为人工智能可以增强员工的智力。人工智能通过提供多样化和不同的解决方案帮助员工克服复杂情况(Jarrahi 2018),随后可以在决策过程中提供规范性输入(Bader 和 Kaiser 2019)。员工应该更多地专注于创造性工作,并应该学习如何有效地使用机器完成日常任务(Jarrahi 2018)。Morikawa(2017)指出,拥有高学历员工和全球业务的公司期望人工智能技术将对企业产生积极影响。文献中将 OM 定义为端到端的组织管理活动和服务链(Karmarkar 和 Apte 2007;Subramanian 和 Ramanathan 2012),其包括产品设计、流程设计、商品生产、规划、调度(Zhao 等 2020)、个性化定位、交付、定制、物流、外包等多项活动。本研究的第一个研究空白是 Brock 和 Wangenheim(2019)指出的空白,即管理者对如何在其组织运营中使用 AI 知之甚少。因此,本文介绍了 AI 在 OM 不同要素(如制造、产品开发、服务和供应链)中的使用。本研究确定的第二个研究空白基于 Gunasekaran 和 Ngai(2012)强调的空白,即需要开发 OM 模型来综合信息并将其转换为知识。因此,本研究试图探索利用人工智能对数字化转型计划获得的组织内存储的数据和信息资产进行信息转化为知识的前景。本研究确定的第三个空白是 Haenlein 和 Kaplan (2019) 强调的开放性问题,即人类和人工智能支持的系统如何和平共处。因此,本研究以命题的形式探讨了八种情景,作者认为员工和人工智能驱动的系统应该协同工作并建立共生关系,因为两者相互依赖,而人工智能系统的成功取决于两者的相互理解。文献表明,与其他技术创新相比,人工智能具有许多优势。首先,人工智能可以通过支持感知、抓取和转换的动态能力来降低风险(Matilda 和 Chesbrough 2020)。其次,人工智能扩大了创造性思维的范围(Eriksson 等人,2020)。第三,人工智能系统支持的一些重要特性是情境感知、通信能力、嵌入式知识、推理能力和自组织能力(Romero 等人,2020)。第四,人工智能、机器人和大数据的结合被称为第四次工业革命,因为这些技术将带来巨大的影响。Jarrahi(2018)建议,人工智能系统的设计不应以取代人类贡献为目的,而应以增强人类知识和决策为目的。本研究的重点是探索员工之间的共生关系以及人工智能在 OM 不同要素中用于做出有效决策的使用。本研究探讨的第一个研究问题是,如何在组织环境中将人工智能应用于 OM?为了探索这个研究问题,提出了八个命题(命题
1. 张建廷;刘 S.;潘,GL;李,GR; Gao,XP材料化学杂志A 2014, 2, 1524–1529。 2. 季建英;张,LL;姬华祥李,Y.;赵X.;白,X.;范,XB;张,FB; Ruoff,RS Acs Nano 2013,7,(7),6237-6243。 3. 李华华;余,MH;王,FX;刘P.;梁,Y.;肖 J.;眼睛,CX;童永祥; Yang, GW Nat Commun 2013, 4. 4. 徐永祥;黄晓倩;林哲英;钟,X.;黄,Y.;段晓峰,XF纳米研究2013,6,(1),65-76。 5. 闫杰;范志军;孙W.;年,GQ;魏,T.;张,Q.;张,RF;支莉娟; Wei, F. Adv Funct Mater 2012, 22, (12), 2632-2641。 6. 闫杰;孙W.;魏,T.;张,Q.;范志军; Wei, F. J Mater Chem 2012, 22, (23), 11494-11502。 7. 陆志勇;张,Z.;朱W.; Sun, XM Chem Commun 2011, 47, (34), 9651-9653。 8. 王红玲; Casalongue,HS;梁YY; Dai,HJ J Am Chem Soc 2010,132,(21),7472-7477。 9. 杨,GW;徐C.L.; Li, HL Chem Commun 2008, (48), 6537-6539.
Authors: Lianglong Sun 1,2,3 , Tengda Zhao 1,2,3, # , Xinyuan Liang 1,2,3,# , Mingrui Xia 1,2,3,# , Qiongling Li 1,2,3 , Xuhong Liao 4 , Gaolang Gong 1,2,3,5 , Qian Wang 1,2,3 , Chenxuan Pang 1,2,3 , Qian Yu 1,2,3 , Yanchao Bi 1,2,3,5 , Pindong Chen 6 , Rui Chen 1 , Yuan Chen 7 , Taolin Chen 8 , Jingliang Cheng 7 , Yuqi Cheng 9 , Zaixu Cui 5 , Zhengjia Dai 1,2,3 , Yao Deng 1 , Yuyin Ding 1 , Qi Dong 1 , Dingna Duan 1,2,3 , Jia-Hong Gao 10,11,12 , Qiyong Gong 8,13 , Ying Han 14 , Zaizhu Han 1,3 , Chu-Chung Huang 15 , Ruiwang Huang 1,3 , Ran Huo 16 , Lingjiang Li 17,18 , Ching-Po Lin 19,20,21 , Qixiang Lin 1,2,3 , Bangshan Liu 17,18 ,Chao Liu 1,3 , Ningyu Liu 1 , Ying Liu 16 , Yong Liu 22 , Jing Lu 1 , Leilei Ma 1 , Weiwei Men 10,11 , Shaozheng Qin 1,2,3,5 , Jiang Qiu 23,24 , Shijun Qiu 25 , Tianmei Si 26 , Shuping Tan 27 , Yanqing Tang 28 , Sha Tao 1 , Dawei Wang 29 , Fei Wang 28 , Jiali Wang 1 , Pan Wang 30 , Xiaoqin Wang 23,24 , Yanpei Wang 1 , Dongtao Wei 23,24 , Yankun Wu 26 , Peng Xie 31,32 , Xiufeng Xu 9 , Yuehua Xu 1,2,3 , Zhilei Xu 1,2,3 , Liyuan Yang 1,2,3 , Huishu Yuan 16 , Zilong Zeng 1,2,3 , Haibo Zhang 1 , Xi Zhang 33 , Gai Zhao 1 , Yanting Zheng 25 , Suyu Zhong 22 , Alzheimer's Disease Neuroimaging Initiative, Cam-CAN, Developing Human Connectome Project, DIDA-MDD Working Group, MCADI, NSPN, and Yong He 1,2,3,5,*
学术出版物(精选)J. Lv†、Y. Wu*†、J. Liu†、Y. Gong、G. Si、G. Hu、Q. Zhang、Y. Zhang、J.-X. Tang、MS Fuhrer、H. Chen、SA Maier、C.-W. Qiu*、Q. Ou *,具有可配置低对称布洛赫模式的双曲极化子晶体。《自然通讯》2023,14,3894。Q. Zhang†、Q. Ou *†、G. Si、G. Hu、S. Dong、Y. Chen、J. Ni、C. Zhao、MS Fuhrer、Y. Yang、A. Alu*、R. Hillenbrand*、CW Qiu*,高对称正交晶体中的单向激发声子极化子。《科学进展》2022,8,eabn9774。 G. Hu†、Q. Ou †、G. Si、Y. Wu、J. Wu、Z. Dai、A. Krasnok、Y. Mazor、Q. 张、Q. Bao*、C.-W. Qiu*,A. Alu*,扭曲 α-MoO3 双层中的拓扑极化子和光子魔角。 Nature 2020 , 582, 209.(被《物理世界》评选为 2020 年十大突破)Y. Wu†、Q. Ou †、Y. Yin、Y. Li、W. Ma、W. Yu、G. Liu*、X. Cui、X. Bao、J. Duan、G. Álvarez-Pérez、Z. Dai、B. Shabbir、N. Medhekar、 X. Li*,C.-M。 Li, P. Alonso-González, Q. Bao*, 通过氢插层实现 α-MoO3 中低损耗声子极化子的化学切换。《自然通讯》2020,11,2646。Q. Ou †, Y. Zhang*†, Z. Wang, JA Yuwono, R. Wang, Z. Dai, W. Li, C. Zheng, ZQ Xu, X. Qi, S. Duhm, NV Medhekar, H. Zhang*, Q. Bao*, 局部电子掺杂引起混合钙钛矿 pn 结的强耗尽。《先进材料》2018,30,1705792。
评估安全性措施对电子纸质交易中客户信任的影响Prabhat agarwal Prayagraj(UP)印度电子邮件:prabhat700700 [at] gmail.com移动:9935959199; 9198704080摘要:安全性与用户信任之间的关系之间的关系是营销中的关键主题。这项研究是在营销部门内进行的,以使用定量数据来证实这种关系。利用一种混合方法方法,将250位受访者的定量见解与定性方法的深度和丰富性相结合,以全面了解用户的看法和数字金融服务中的经验。电子毛线用户对其系统提出了很大的信任。研究表明,这种信任水平是稳定的,并且加密协议是焦点决定因素。用(Davis等,1989)和(Duan等,2019)的话语,我们的研究与这些既定模型保持一致,表示满意度与信任水平之间的正线性相关性。 通过这些统计数据的眼睛查看电子钱包平台只是我们信任它们的问题的一种方法。 定性地,我们的研究通过透明度,功效和过去的安全事件的主题揭示了用户信任的三个维度。 根据社会交流理论(Blau,1964; Bauer,1960)和客户满意度模型(Fornell等,1996),这些定性发现补充了数字,表明对数字金融交易的信任是一个多方面的概念。 关键字:电子车牌,安全措施,用户信任,加密协议,数字交易,定性分析,营销1。用(Davis等,1989)和(Duan等,2019)的话语,我们的研究与这些既定模型保持一致,表示满意度与信任水平之间的正线性相关性。通过这些统计数据的眼睛查看电子钱包平台只是我们信任它们的问题的一种方法。定性地,我们的研究通过透明度,功效和过去的安全事件的主题揭示了用户信任的三个维度。根据社会交流理论(Blau,1964; Bauer,1960)和客户满意度模型(Fornell等,1996),这些定性发现补充了数字,表明对数字金融交易的信任是一个多方面的概念。关键字:电子车牌,安全措施,用户信任,加密协议,数字交易,定性分析,营销1。从道德上讲,我们的研究严格地持有最高标准(APA,2017年),并优先考虑机密性,并在参与者中获得知情同意。在我们对定性数据的分析中,我们使用一种与(Braun&Clarke's Schema,2006)保持一致的编码方法,以证明这种主题分类存在结构。我们的综合讨论既包含定量和定性研究结果,又包含彼此通知,并相互告知合并的图片:在技术安全措施和如果愿意的话之间引用了不可思议的情况。对电子钱包提供商的建议包括持续改进加密技术,在沟通,用户友好的界面以及与监管机构合作方面保持坦率和警惕。含义是丰富的;这项研究指导金融市场参与者通过旋风市场的用户安全和经验的灌木丛,在这些市场中,数字金融的烟雾笼罩着一切。在当今的数字世界中介绍,电子钱包(电子钱包)无处不在,改变了我们生活中货币的使用方式。当我们穿越这种不断变化的景观时,了解人们应采取的安全措施应在电子钱包平台上采取的安全措施的重要性,鉴于信任用户的发展变得根深蒂固,变得越来越明显。1.1背景和背景而不是传统货币兑换,数字付款已接管。不再有支票站在银行排队以现金,现在每个人都可以滑动他们的塑料卡!(琼斯,2018年)代表了这种进化的见证,并指出了ittransmed的性质。电子货物为我们的所有财务需求提供了整个服务,从必要的资金到付款。(Smith等人,2019年)提供效率和便利性的电子货物已成为我们日常财务互动的不可替代的一部分。但是,使用这些平台的繁荣使我们确实需要检查哪些因素会影响用户的信任和满意度。它们在电子手提环境中越来越普遍。1.2我们询问的核心研究问题和目标是一个基本问题:电子 - 毛线实施中的安全措施如何影响用户在这些系统中放置的信任?较早的研究阐明了电子钱包用户满意度的多方面性质,其中包括但不限于
等效缩放速度的减缓和经典摩尔定律的终结给硅基CMOS集成电路带来了重大挑战。这迫切需要开发用于后摩尔时代的新型材料、器件结构、集成工艺和专门的系统架构。受“更多摩尔”、“超越摩尔”和“超越 CMOS”战略 (参考文献 1:https://irds.ieee.org/) 的启发,下一代集成电路需要在各个领域提高性能,包括非硅半导体、超越 CMOS 器件、高密度集成工艺以及独特的系统架构和新兴应用。同时,卓越器件的发展推动了分层半导体、横向外延异质结、集成生物芯片方面的进步,从而实现更节能和高速的信号处理、存储、检测、通信和系统功能 (图 1)。本研究主题为研究人员提供了一个论坛,展示最新的进展,并回顾材料、结构、设备、集成和系统方面的最新发展、挑战和机遇,以照亮后摩尔时代。其中包括优化的硅基材料、新兴的层状半导体(Wang et al., 2018; Xie et al., 2018)、下一代互连材料、新型器件结构(Duan et al., 2014; Li et al., 2015)、新工作原理器件(Liu et al., 2021; Zhang et al., 2022a)、3D 集成工艺(Zhang et al., 2022b; Zhang et al., 2022c),以及生物电子学(Wang et al., 2022)和传感器技术(Abiri et al., 2022)的最新进展,强调了该领域持续研究和创新的必要性。对于优化的硅基材料,Islam 等人提出了一种简单且环保的方法,用于使用铝热还原在石英基板上低成本生产硅薄膜。这种创新方法解决了使用经济高效且可持续的方法获得高质量硅薄膜的长期挑战。研究人员利用铝热还原,将硅片表面转化为
Prashant S. Emani 1,2†,Jason J. Liu 1,2†,Declan Clarke 1,2†,Matthew Jensen 1,2†,Jonathan Warrell 1,2†,Chirag Gupta 3,4†,Cagat Lee 1,5†Ay Dursun 1,2 Dursun 1,2 GALEEV 1,2,AHYEON HWANG 5,6,YUNYANG LI 2,7,PENGYU NI 1,2,Xiao ZD E JAKEN E E. PSICE 1,2 LAV BENDL 9,10,11,12,Lucy Bicks 13,Tanima Chatterjee 1,2 1 Gan DI 9,12,16,Sophia Gaynor-Gillett 14,17,Jennifer Grundman 13,Natalie Hawken 13,Ella Henry 1,2,Gabriel E. Hoffman 9,10,11,12,18,19 Junhao Liu 5,Shuang Liu 4,Shaojie MA 21,22,Michael Margolis 13,Samantha Mazariegos 13,Jill Moore 2,Edha Jennifer 24 3,Milos Pjanic 9,10,11,11,11,12 Megan Spector 14,Brisley Wasley Jilrie Rosema 3,Gaoyuan Wang 1,2,Yan Xia 1,2,Shaohua Xiao 13,Andrew C. Yang 1,2,Suesen Zheng 1,2,Michael J. Gandal 26,27,28,29,30 Hiping Weng 23,Kevin P. White 33,Hyejung赢得34,Matthew J. Girgenti 25,35,36*,Jing Zhang 5*,Daifeng Wang 18,4,337*,,2,7,24,39*