计算结果表明,电子催化策略显着降低了将N 2转换为AZO化合物的活化能。与非催化反应相比,该反应需要3.44 eV(在正常条件下几乎不可能),电子催化的途径将活化能降低至仅为0.14 eV,从而使反应在动力学上可行。此外,该策略表现出广泛的适用性,扩展到偶氮合成超出各种芳基卤化物和亲核芳香族化合物,为合成高价值增添化学物质的有效方法提供了有效的方法。
他们还发现了另一个不寻常的电子现象:整数量子异常霍尔在多种电子密度中的效应。分数量子异常霍尔效应被认为是在电子“液体”相中出现的,类似于水。相比之下,团队现在观察到的新状态可以解释为电子“固体”阶段 - 与电子“冰”的形成相互作用 - 当系统的电压在超低温度下仔细调谐时,该状态也可以与分数量子异常的霍尔同存。
氰基有机发色团在光毒素催化中成为理想的养育剂。1 - 3在寻找可用的阴极电势窗口的扩展时,它们被用于所谓的连续光诱导的电子传递机制(Conpet,图,图。1a)。conpet工艺是由per烯比二酰亚胺染料4率先提出的,并进一步扩展到其他有机彩色团,5个,例如Dicyanoanthtaracene,6 Rhodamine 7和Eosin。8大多数情况基于中性光催化剂和相应的自由基阴离子,如图1a,但也有有关阳离子光催化剂的报道,相应的中性自由基形成了第一个光诱导的电子传递过程。9,10最近,蓝氰烯进入了竞技场,用于各种反应,包括活化还原性顽固的芳基氯化物。11 - 20
(32)紧密结合理论认为价电子更紧密地保持原子,但在整个固体中被视价轨道重叠进行了离域。该模型适用于SI和GE等半导体,ALP和NACL等绝缘体和盐,以及𝑑金属及其化合物。实际上,紧密结合理论与分子轨道(MO)理论具有显着相似之处。电子结构的任何计算都需要选择原子轨道(AO)基集,该集通常是最小的基础集,仅包含价原子轨道。对这些AOS中的每一个都分配了价值轨道能,可以从原子光谱或Hartree-fock计算中进行经验确定,如下所示。10这些能量反映了原子电负性的趋势。然后,构建了这些AOS的对称适应性线性组合(SALC)。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。 使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。 在MO理论中,𝐻具有等于分子中基本AO的数量。 在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。 求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。在MO理论中,𝐻具有等于分子中基本AO的数量。在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。这些数值结果然后用于生成相关信息和图表。对于MO理论,输出包括MO能量图,确定最高占用和最低的无置置的MOS,即HOMO和LUMO,以及使用AO系数进行电子密度分布和键合分析的人群分析。紧密结合计算的结果产生了状态图的电子密度,这是电子能级的准连续分布,可以分解为来自各种轨道或原子成分的态密度,以及相应的FERMI水平,这是Homo的固态类似物的固态类似物。种群分析也可以进行,并提供用于识别重要键合特征的晶体轨道重叠种群(COOP)或汉密尔顿人群(COHP)图。最后,带结构图或能量分散曲线,这些曲线是沿波向量空间中特定方向的波形绘制的能量。
自由电子和光场之间的相互作用构成了一个独特的平台,用于研究物质的超快过程并探索基本的量子现象。具体而言,超快电子显微镜中的光学调制电子作为无创探针,将时空 - 时间 - 能源分辨率推向涂料表 - attosecond-microelectronvolt范围。电子能量远高于所涉及的光子能量,通常使用低电子 - 光线耦合,因此,仅提供有限的量子非线性非线性现象的访问权限,这是纳米结构动态响应的基础。在这里,我们从理论上研究了光子和可比较能量的电子之间的电子光相互作用,揭示了量子和后坐力效应,包括将表面散射电子到光平面波的非散布耦合,无弹性电子反向散射的无弹性电子从受约束的光场进行了散射,并通过强烈的电气 - 光线 - 光线 - 光线 - 光线偶联不足的电子差异不足。我们对电子 - 光 - 物质相互作用的探索有可能在超快电子显微镜中进行应用。
图2带电荷中性尖端的ZLL的点光谱。(a)栅极可调sts的假颜色图显示-2 <𝜈 <2填充范围中的ZLL激发光谱,箭头指向-2 <𝜈 <-1(b)缩放光谱近2/3 = -2/3中的haldane sash特征。使用GAP的门范围测量FQH间隙。虚线跟踪A | DVG/DE | = 1个斜率在y轴上移动以与数据对齐。(c)图显示了绿色中STS DAT中的峰位置以及隧道间隙(δT),热力学间隙(δ)和库仑间隙(δC)之间的关系。(d)单个风味量子霍尔系统的精确对角线计算获得的状态密度。(e)(d)的linecuts在选定的填充物处显示光谱(F)使用Lorentzian拟合的电子激发峰提取的间隙,从而形成-2 <𝜈 <-1范围(蓝色)和-1 <𝜈 <0范围(红色)中的Haldane Sash特征。从精确的对角度模拟中提取的类似差距以灰色显示。(g)(a)的linecuts,在恒定填充处显示光谱特征,以与理论(d)进行比较。
在一个令人兴奋的飞跃中,海得拉巴塔塔基础研究所(TIFRH)的科学家设计了一种优雅的解决方案,以成功地产生MEV(10 6 eV)温度电子,仅以先前认为是必要的激光强度的分数(小100倍)。该技术实现了两种激光脉冲;首先是在微螺旋体中产生微小的,受控的爆炸,然后是第二个脉冲,将电子加速到Megaelectronvolt(MEV)能量。更令人兴奋的是,他们用激光比以前认为必要的少100倍实现这一目标,从而使其更容易访问和通用,以便将来的研究!由于能够为从非破坏性测试,成像,层析成像,层析成像和显微镜产生高能量电子束的能力,因此该发现的含义可能是戏剧性的,并且可以影响材料科学到生物学科学。
https://doi.org/10.26434/chemrxiv-2024-n0dd9 orcid:https://orcid.org/0000-0000-0001-9669-7209 content content content content content content content content note consect consemrxiv consemrxiv note contect consect。许可证:CC BY-NC-ND 4.0
自由电子和光场之间的相互作用构成了一个独特的平台,用于研究物质的超快过程并探索基本的量子现象。具体而言,超快电子显微镜中的光学调制电子作为无创探针,将时空 - 时间 - 能源分辨率推向涂料表 - attosecond-microelectronvolt范围。电子能量远高于所涉及的光子能量,通常使用低电子 - 光线耦合,因此,仅提供有限的量子非线性非线性现象的访问权限,这是纳米结构动态响应的基础。在这里,我们从理论上研究了光子和可比较能量的电子之间的电子光相互作用,揭示了量子和后坐力效应,包括将表面散射电子到光平面波的非散布耦合,无弹性电子反向散射的无弹性电子从受约束的光场进行了散射,并通过强烈的电气 - 光线 - 光线 - 光线 - 光线偶联不足的电子差异不足。我们对电子 - 光 - 物质相互作用的探索有可能在超快电子显微镜中进行应用。