内容 1. 简介 ................................................................................................................................................................................ 2 2. EMI 优化设计 ................................................................................................................................................................ 3 2.1. CA-IS2092A 概述 ...................................................................................................................................................... 3 2.2. 优化设计和布局 ...................................................................................................................................................... 4 2.2.1. 去耦电容放置 ............................................................................................................................................. 4 2.2.2. 初级侧和次级侧之间的 Y 电容放置 ............................................................................................................. 4 2.2.3. 铁氧体磁珠/共模电感/差模电感 ............................................................................................................. 5 2.2.4. 构建边缘保护 ............................................................................................................................................. 5 3. CA-IS2092A 低 EMI 参考设计 ............................................................................................................................. 6 3.1. PCB 设计指南 ................................................................................................................................................................ 6 3.2. CA-IS2092A 参考设计原理图 ................................................................................................................................ 8 3.3. 参考设计测试结果 ................................................................................................................................................ 9 4. 修订历史 ............................................................................................................................................................. 11 5. 重要声明 ............................................................................................................................................................. 11
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 ......................。。9 2.1.1 功率级。。。。。。。。。。。。。。。。。。。。。......10 单端功率级 [21, 22]: .........10 差分功率级 [16, 23]: ......。。。。10 2.1.2 调制。。。。。。。。。。。。。。。。。。。........12 2.1.2.1 脉冲宽度调制 (PWM) .......12 2.1.2.2 差分 D 类放大器的 PWM ......14 二元调制: ..................14 三元调制: ....................15 2.1.2.3 自激振荡调制 ........。。。。。。。。16 2.2 D 类放大器的 EM 发射 ...................18 2.2.1 输出轨的 EMI ......................18 2.2.2 供电轨处的 EMI .......。。。。。。。。。。。。。。。20 2.2.3 EMC 解决方案。。。。。。。。..................22 2.3 表征 D 类放大器 .....。。。。。。。。。。。。。。24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
玻璃碳(GC)是一种独特的碳,具有广泛的有用特性,包括高热稳定性,低热膨胀和出色的电导率。这使其成为热塑性复合材料中加强的有前途的候选人。在这项工作中,使用微米GC粉(µGC)和亚皮平GC粉末(SµGC)制造高密度聚乙烯(HDPE)基础复合材料。通过两种不同的方法将GC钢筋引入聚合物基质中,以形成随机和隔离的增强分布。检查了GC体积含量(φ)和复合结构对电导率的影响。证明,虽然玻璃碳可以比石墨更有效地增强HDPE的电导率,但它与碳Na- Notubes的出色性能相匹配,碳Na- Notubes的性能弥补了它们之间的间隙。研究表明,GC的添加增加了HDPE的电导率,并且在φ≈4%时可以实现渗透阈值(φC)。GC的隔离分布导致渗透阈值的值(φC≈1%)低于随机分布。
摘要电子设备和工业技术的快速扩散已经扩大了电磁干扰(EMI)的挑战,这破坏了敏感设备的功能和可靠性。这项研究研究了源自本地采购的稻草的创新EMI屏蔽材料的开发,该材料是一种丰富的农业副产品。主要目标是提供传统屏蔽材料的可持续,具有成本效益和轻巧的替代品。稻草被加工并掺入带有导电填充剂的聚合物矩阵中,以形成稻壳(RH) - 聚合物(P)的比例为90:10,80,80:20,70:20,70:30:30,60:30,60:40和50:50。使用X射线衍射(XRD),扫描电子显微镜(SEM),傅立叶变换显微镜(FTIR)和矢量网络分析,使用诸如X射线衍射(XRD),扫描电子显微镜(SEM)等技术的结构,热,电气和EMI屏蔽性能进行了串联复合材料的表征。结果表明,根据填充剂的浓度,在8 GHz至12 GHz的频率范围内,基于稻草的复合材料在20 dB到40 dB的屏蔽效率(SE)值中获得了屏蔽效率(SE)值。由于复合材料的稳定性,发现50:50的比率具有最高的屏蔽效率。材料还表现出出色的电导率和轻巧的特性,使其非常适合电子,电信,汽车和航空航天工业的应用。这项研究强调了农业残留物应对关键工业挑战的潜力,为环保和可扩展的解决方案铺平了道路。关键字:电磁干扰,电子设备,屏蔽材料,稻草,导电聚合物
抽象辐射能量是一个问题,随着数据速率的增加而变得复杂。此外,EMI问题经常在系统验证过程后期出现,靠近系统产品运输截止日期。这些EMI问题的解决方案非常昂贵且难以实施。因此,通过在产品设计阶段的模拟和分析来捕获潜在的EMI问题,而不是在产品开发结束时的EMC调节测量过程中捕获潜在的EMI问题。此外,EMI的仿真技术通常很复杂且耗时,也不适合宽带分析。本文介绍了一种使用3D场求解器工具来分析各种频率的辐射能量的方法。运行一个3D字段求解器模型,并在一系列频率上生成S-参数。初始溶解点用于生成辐射能量的定量结果。然后,只有初始求解是在各种频率下重新运行的,这是基于S参数结果的有趣点选择的。初始求解迅速完成,因此可以使用多个点来生成辐射能量在一系列频率中产生。然后,该方法用于分析来自一些连接器结构的EMI性能,并将其与实验室测量值进行比较。然后将各种特征比较有关它们对EMI的影响的各种特征。作者(S)传记Michael Rowlands是Molex信号完整性和连接器设计组的电气工程师。他专门从事多gigahertz频率的信号完整性。他在1998年获得了麻省理工学士的电气工程学士学位和硕士学位。毕业后,他在波士顿Teradyne担任信号完整性工程师四年。他为高达6 GHz的测试设备设计了电缆组件,电路板和互连。2002年,他在伊利诺伊州的一家初创公司工作。该公司以12.5 Gbps设计的色散薪酬微芯片用于光纤通信。他设计了电路板,以演示和验证12.5Gbps的性能,并根据系统建模进行算法改进。他在ECTC,DesignCon,IMAPS,IPC-APEX和PCB East上撰写或合着并介绍了技术论文。在2005年,作为Endicott Interconnect Technologies年的研发的一部分,他设计和分析了电路板,芯片软件包和自定义计算系统。自2009年以来,他从事Molex设计的下一代25-40Gbps I/O和板上连接器。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。 他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。 在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。 目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。
emi是屋顶太阳能开发商的领先参与者,拥有印度尼西亚最大的装置记录。通过其业务部门Sun Energy,他们目前在印度尼西亚拥有并运营超过70 MWP的太阳能系统投资组合。此外,他们还参与了与智能手机应用程序集成的EV充电器业务,以及使用区块链技术的REC(可再生能源证书)平台业务。EMI通过建立一个综合而强大的业务生态系统来积极致力于促进所有部门的清洁能源计划,以促进稳健的增长。
在下一个屏幕上,您将获得上述选项。请选择最合适的选项,然后单击“确定”。然后将删除约会,并且在每日日记/诊所预约书中将不再可见。记录取消访问的记录以及为此指定的原因,将记录在患者在EMI上记录的日记部分中。在适当的情况下,应完成保障原则,应完成失败的遭遇模板。
Jeff 在半导体封装领域拥有超过 25 年的经验,在被 Applied Materials 收购后,他领导着 Tango 产品组。他最初在 Semitool 担任工艺工程师,专攻电镀和湿法清洗,从封装行业起步。Semitool 被 Applied Materials 收购后,他的职业生涯转型为产品管理,然后是业务管理,负责支持 Applied 封装部门的电镀和 PVD 系统。
重要通知:本文所述的德克萨斯州仪器及其子公司的产品和服务由TI的标准销售条款和条件出售。建议客户在下订单之前获得有关TI产品和服务的最新信息。ti对应用程序帮助,客户的应用或产品设计,软件性能或专利侵权不承担任何责任。发布有关任何其他公司产品或服务的信息并不构成TI的批准,保修或认可。