SMA 通常以两种方式使用:要么利用形状记忆效应,要么利用热或应力诱导的马氏体相变提供的超弹性行为。在 TiNi 基 SMA 中,可实现高达 8% [19] 的可逆固有应变,而利用形状记忆效应则需要加热到高温相奥氏体才能可逆地恢复变形。超弹性合金的可逆伪弹性行为与应力诱导的马氏体相变有关,从奥氏体到马氏体。在这种情况下,只需移除施加的载荷即可实现可逆性。根据应用的要求,SMA 的转变温度可以通过热处理或改变成分来调整。[20–22] Chluba 等人。研究表明,三元形状记忆合金 TiNiCu 即使在 1000 万次超弹性循环后也不会出现疲劳,[23] 这使得这种合金成为皮肤电子(应用于皮肤的可拉伸电子产品)等应用的良好候选材料,其中肘部或膝盖处的设备可能会经受大量循环和大应变。嵌入聚合物中的传统金属(如铜)的循环行为已被研究,结果显示应变高达 5% 时就会出现裂纹。[24] 在人体应用中
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
纸质贡献。本文研究了ML-DSA的内存优化技术,以增强其实际适用性,同时保留其强大的安全性。探索的关键优化之一是通过现场矩阵矢量乘法减少内存足迹。通过实施这些操作,该算法可以显着减少所需的内存量,从而使在具有约束资源的环境中部署ML-DSA更为可行,例如嵌入式系统,IoT设备和移动平台。另一个重要的优化是减少秘密钥匙大小,这是通过延迟构成秘密钥匙的七个参数的计算来获得的,直到需要签名的那一刻。因此,ML-DSA的关键内存消耗可能会降低,从而提高了其对大型秘密键存储的各种实际用例的适合能力。
Java内存泄漏给开发人员带来了重大挑战,通常会导致性能和系统不稳定。“智能调试:AI解决Java内存泄漏的方法”探索了旨在解决和减轻这些问题的创新人工智能技术。本文研究了AI驱动的工具和方法的集成,包括机器学习算法和异常检测,以更有效地识别,分析和解决Java应用程序中的内存泄漏。通过利用预测模型和自动分析,这些AI方法可以增强调试过程,从而精确的见解记忆使用模式和泄漏起源。本文对传统调试方法与AI增强策略进行了比较评估,强调了检测准确性,分辨率速度和整体系统稳定性的提高。调查结果强调了AI改变内存泄漏管理的潜力,从而提供了有关软件调试未来的前瞻性观点。
当今大多数心理学家对“智力”一词的理解本质上是一个差异性概念。最广为接受的智力结构描述是赫布-卡特尔-霍恩-卡罗尔(HCHC)模型(Brown,2016;Carroll,1993;McGrew,2009;见图 1),该模型将智力归因于一个层次结构。在最低层次上,特定技能和狭义的认知能力可能会对不同的认知任务产生影响。在第二层次上,更具普遍性的广义能力因素有助于解释为什么某些任务彼此之间的关联比与其他任务的关联更紧密。这些广义的能力是相关的,这种常见的、任务一般性的变异性在该模型层次结构的顶端表示为一般智力,通常表示为 g 或 g 因子。 g 因子解释了为什么所有认知任务都倾向于相互关联,这种模式被称为正流形(Carroll,1993;McGrew,2009)。尽管人们对智力结构有着广泛的共识,但对于导致智力个体差异的因果因素,人们的看法却不太一致。智力差异的一个主要解释是人们完成基本认知操作的速度不同,这被称为信息处理速度或处理速度。另一个可能的解释是执行注意力或避免分心、集中注意力和保持注意力的能力不同,有时也称为“认知控制”或“执行功能”。
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
居住的记忆T细胞(T RM细胞)已成为黑色素瘤和其他实体瘤抗肿瘤免疫的有趣研究主题。在抗肿瘤免疫的初始阶段,它们保持免疫平衡,并防止肿瘤细胞和原发性黑色素瘤形成的挑战。在转移性环境中,它们是免疫检查点抑制(ICI)的主要靶细胞群体,因为它们高表达抑制性检查点分子,例如PD-1,CTLA-4或LAG-3。一旦用ICI治疗黑色素瘤患者,居住在肿瘤中的T RM细胞就会重新激活并扩展。肿瘤杀死是通过分泌效应子分子(例如ifng g)来实现的。但是,还观察到脱靶效应。免疫相关的不良事件,例如影响皮肤等屏障器官的不良事件,可以通过ICI诱导的T RM细胞介导。因此,对这种记忆T细胞类型的详细理解是必须更好地指导和改善免疫疗法方案。