我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。
厄巴纳-香槟 美国 电子邮件:scagnoli@illinois.edu 摘要 在安全关键工作场所发生人为失误的担忧通常与基础设施损坏、人员受伤甚至死亡有关。然而,大多数人天生就想避免失误,但人为失误仍然时有发生。本研究探讨了在航空业背景下执行高后果任务的人与技术之间的相互作用。指导这项研究的定性方法包括事件报告、观察和对飞行员和工程师的采访,他们深入讨论了技术,并在相对较小的通用航空 (GA) 私人包机业务的背景下转述了人为失误事件。该研究回顾了技能、知识和基于规则的错误 (SKR) 的传统人为失误模型,并揭示了 SKR 人为失误模型中缺失的一环,建议对该模型进行更新,包括一个与人类在未来创新的安全关键工作场所中面临的高科技工作世界相关的元素。 关键词:人为失误、错误、安全关键工作场所、技术、创新、人力资源开发 简介
• 确定剂量是否有效或患者是否需要额外接种疫苗。您可能需要联系制造商,看他们是否认为该疫苗可行。有关疫苗接种错误时应遵循的步骤(包括制造商联系信息),请参阅美国疾病控制与预防中心 (CDC) 的《目前在美国授权的 COVID-19 疫苗使用的临时临床注意事项》指南。您还可以查看 CDC 关于具体接种错误的指南。 • 让患者或父母、监护人或其他负责任的成年人知道错误以及是否需要重新接种疫苗。最佳做法建议将错误通知患者。 • 调查错误发生的原因以防止再次发生。您的重点应该放在确定最合适的方法来防止未来的错误,而不是追究责任或指责。如果错误是由于未遵守政策而发生的,则应遵循组织政策以了解管理的后续步骤。如果遵循了政策,请审查确定的做法以创建更多保障措施并防止将来出现错误。 • 向疫苗不良事件报告系统 (VAERS) 报告 COVID-19 疫苗接种错误。CDC 要求这样做。查看 VAERS 网站,了解有关需要报告的事件和其他 VAERS 报告的更多信息。
在所有情况下,我们都要求对线性方程式系统提供简短的解决方案,因此称为SIS(简短整数解决方案)问题。我们将研究的SIS问题SIS(𝑛,𝑚,𝑞,𝐵)是由变量数量,方程数𝑛,环境有限场ℤℤℤ𝑞𝑞的数量以及溶液的绝对值b的参数化。也就是说,我们要求每个坐标𝑒∈[−𝐵,−𝐵+ 1,…,𝐵−1,𝐵]。要定义平均案例问题,我们需要指定𝐀和𝐛的概率分布。在本课程的大部分时间里,我们将在ℤ×𝑚𝑞中均匀地随机。有两种不同的定义方法。第一个是在“总”制度中,我们只能从unℤ上方的均匀分布中选择𝐛。“总计”是什么意思?NP中的总问题是每个问题实例的解决方案,可以通过证人进行验证,但是解决方案可能很难找到。一个示例是考虑到您的积极整数𝑁,并要求您进行主要分解。一个非示例是3颜色的问题,在该问题中,您将获得图形𝐺,并要求您使用3颜色。尽管此问题出现在NP中,但并不是总共,因为并非每个图都可以3-色。
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特的位翻转错误将导致有害的
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特上的位翻转错误将导致对目标量子比特施加有害的非操作,从而导致两个错误的量子比特,而不是一个。因此
3 .多径对星载导航接收机的影响 ...............................11 3.1 PRN 测距和 DLL 操作 .......................11 3.2 PRN调制信号描述 .......................16 3.3 相干PRN接收机 ...............................17 3.3.1 无多径情况下的相干 DLL 鉴别器曲线 ....。。。。。。。。。。。。。。。。。。。。。。。。........18 3.3.2 多径情况下的相干 DLL 鉴别器曲线 ............。。。。。。。。。..............21 3.3.3 存在多径时的 PLL 操作 .........26 3.4 非相干PRN接收机 ...........................31 3.4.1 无多径情况下的非相干DLL鉴别器曲线 .........................31 3.4.2 多径存在下的非相干 DLL 鉴别器曲线 ...........................32 3.4.3 存在多径时的 PLL 操作 ..........35 3.5 模拟结果 ..................。。。。。。。。。。。。。。。42 3.5.1 CIA 代码。。。。。。。。。。。。。。。。。。。。................42 3.5.2 具有窄相关器间距的 CIA 码 .......。。。。56 3.5.3 P 代码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73
国家报告与学习系统(NRLS)收到了英格兰NHS组织报告的患者安全事件。从2013年到2014年,它收到了5990个此类报告,涉及社区护理,医疗和治疗服务中的胰岛素;社区药房;和一般实践设置。