摘要:为了实现高温下的量子反常霍尔效应(QAHE),采用磁邻近效应(MPE)的方法,破坏拓扑绝缘体(Bi0.3Sb0.7)2Te3(BST)基异质结构中的时间反演对称性,并与具有垂直磁各向异性的亚铁磁绝缘体铕铁石榴石(EuIG)形成异质结构。这里我们证明了大的异常霍尔电阻(R AHE),在 300 K 时超过 8 Ω(ρ AHE 为 3.2 μ Ω · cm),并在 35 个 BST/EuIG 样品中维持到 400 K,超过了 300 K 时 0.28 Ω(ρ AHE 为 0.14 μ Ω · cm)的过去记录。大的 R AHE 归因于 BST 和 EuIG 之间原子突变的富 Fe 界面。重要的是,AHE 环的栅极依赖性随着化学势的变化没有显示出符号变化。这一观察结果得到了我们通过在 BST 上施加梯度塞曼场和接触势进行的第一性原理计算的支持。我们的计算进一步表明,这种异质结构中的 AHE 归因于固有的贝里曲率。此外,对于 EuIG 上的栅极偏置 4 nm BST,在高达 15 K 的负顶栅电压下观察到与 AHE 共存的明显的拓扑霍尔效应(THE 类)特征。通过理论计算的界面调谐,在定制的磁性 TI 基异质结构中实现了拓扑不同的现象。关键词:拓扑绝缘体、磁性绝缘体、异常霍尔效应、磁邻近效应、第一性原理计算、贝里曲率
yttrium硼酸盐用欧洲离子掺杂,通过在900 o C的消气炉中的固态合成制备4小时,而在消音炉中,在1000 o C再次制备了1000 o C的兰田和铝制硼酸盐。所产生的材料是细的白色粉末。在稀土离子中,Europium是最常用的激活剂之一,因为EU 3+和EU 2+的离子可以用作宿主晶格中的发射位点。EU 3+离子可以在不同基质组成中产生有效的尖锐发射峰。 进行样品的光致发光分析,基于通过比较特征确定EU 3+离子的发光强度。 YBO 3:EU 3+磷光是光学活跃的,化学稳定。 它的特征是由于5 d 0→7 f 1和5 d 0→7 f 2电子跃迁,在≈591nm,≈612和≈696nm处有强橙红色发射。 在≈592和≈615nm处的labo 3:eu 3+也观察到了红色发射,表征了5 d 0→7 f 1和5 d 0→7 F J(j = 0,1,2,3,4)的过渡。 虽然用欧洲离子掺杂的铝制硼酸盐在≈612nm处显示出强烈的发射,因此该材料适用于照明设备。 使用傅立叶变换红外光谱(FTIR)的技术来研究获得的材料的结构。EU 3+离子可以在不同基质组成中产生有效的尖锐发射峰。光致发光分析,基于通过比较特征确定EU 3+离子的发光强度。YBO 3:EU 3+磷光是光学活跃的,化学稳定。它的特征是由于5 d 0→7 f 1和5 d 0→7 f 2电子跃迁,在≈591nm,≈612和≈696nm处有强橙红色发射。在≈592和≈615nm处的labo 3:eu 3+也观察到了红色发射,表征了5 d 0→7 f 1和5 d 0→7 F J(j = 0,1,2,3,4)的过渡。虽然用欧洲离子掺杂的铝制硼酸盐在≈612nm处显示出强烈的发射,因此该材料适用于照明设备。使用傅立叶变换红外光谱(FTIR)的技术来研究获得的材料的结构。
以硝酸锌、硝酸铕和尿素为燃料,采用燃烧反应合成了浓度为0.05和0.10 mols的Eu掺杂ZnO半导体基质。为了分析铕浓度和烧结对ZnO结构、带隙、磁性和形貌的影响,将样品在1100°C下烧结30分钟,并通过X射线衍射、紫外和可见光谱、振动样品磁强计和扫描电子显微镜对烧结前后进行分析。从所得结果发现,形成了半导体相ZnO和第二相(Eu2O3)。观察到烧结前后样品的带隙值在半导体范围内,并且在室温下表现出铁磁性。关键词:稀磁半导体,燃烧反应,氧化锌,铕。
1 适用的关键矿产包括特定形式的铝、锑、砷、重晶石、铍、铋、铈、铯、铬、钴、镝、铒、铕、萤石、钆、镓、锗、石墨、铪、钬、铟、铱、镧、锂、镥、镁、锰、钕、镍、铌、钯、铂、镨、铑、铷、钌、钐、钪、钽、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆。
The 17 Rare Earths are cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), promethium (Pm), samarium (Sm), scandium (Sc), terbium (TB),Thulium(TM),Ytterbium(Yb)和Yttrium(Y)。这些矿物具有独特的磁性,发光和电化学性能,因此在许多现代技术中都使用,包括消费电子,计算机和网络,通信,卫生保健,国防,清洁能源技术等。即使是未来主义的技术也需要这些REE。
Eu (3+)(氧化铕中的铕,Z=63)..............................................................................................149 F (-)(氟化锂中的氟,Z=9)......................................................................................................155 Fe o(铁金属,Z=26)......................................................................................................................159 Ga o(镓金属,Z=31)......................................................................................................................163 Gd o(钆金属,Z=64)......................................................................................................................169 Ge o(锗金属,Z=32)......................................................................................................................173 Hf o(铪金属,Z=72)......................................................................................................................178 Hg o(汞金属,Z=80)......................................................................................................................182 Ho o(钬金属,Z=67)......................................................................................................................186 I (-)(碘钾碘化物,Z=53)...................................................................................................190 In o (铟金属,Z=49)....................................................................................................................196 Ir o (铱金属,Z=77)...................................................................................................................200 K (+) (氯化钾中的钾,Z=19)......................................................................................................204 Kr (+) (碳中氪,Z=36)......................................................................................................210 La (3+) (氧化镧中的镧,Z=57)......................................................................................................213 Li (+) (氢氧化锂中的锂,Z=3)......................................................................................................219 Lu o (镥金属,Z=71)......................................................................................................................224 Mg o (镁金属,Z=12)......................................................................................................................228 Mn o (锰金属, Z=25)......................................................................................................................233 Mo o(金属钼,Z=42)..................................................................................................................237 N (3-)(氮化硼中的氮,Z=7)..................................................................................................241 Na (+)(氯化钠中的钠,Z=11)........................................................................................247
Ag silver Al aluminium APS Announced Pledges Scenario As arsenic a-Si amorphous silicon ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer Au gold B boron B20 Business 20 Ba barium Be beryllium Bi bismuth C carbon CAIT Climate Analysis Indicator Tool CdTe cadmium-telluride Ce cerium CIGS铜 - 印度 - 二苯胺 - 二硫化物co钴二氧化碳二氧化碳COP会议CR铬 erbium Eu europium EV electric vehicles EW electrowinning F fluorine FC Fuel cell Fe iron Ga gallium GATT General Agreement on Tariffs and Trade Gd gadolinium Ge germanium GHG greenhouse gas GIS Geographical Information System Gt giga tonne GW giga watts Hf hafnium HLT hard-rock lithium Ho holmium HPAL high-pressure acid leaching IEA International Energy Agency In indium IPCC政府间气候变化小组IR IRIDIUM IRIDIUM IRENA RENEWABLE能源局IRTC国际材料国际圆桌会议批判性KT KILO TONNES
磁性接近效应提供了一种有希望的方法,可以将欧洲一氧化碳(EUO)的低居里温度(T c)降低到室温,同时保持其化学计量和绝缘性能。这项工作使用静态和时间分辨的磁光kerr效应测量来研究EUO/CO Bilayers,并探讨了磁接近对T C和EUO的自旋动力学的影响。激发会导致EUO磁化的超快增强,然后在纳米秒内进行脱氧化。在放置在平面外磁场中的EUO/CO BiLayer中选择性激发CO时也可以看到这种行为,这归因于从CO进入EUO的SuperDi效率旋转电流的传播。由于CO的自旋动力学显示了瞬时热电器化,因此双层提供了一个系统,可以通过改变样品温度或泵液等外部参数(例如样品温度或泵)来调整瞬态磁光信号并符号。此外,在强烈的激发方案中,可以测量基础EUO的磁性磁滞,该磁性磁滞至今,该磁滞至今已呈现到室温到室温 - 提供了实验性证据,证明了CO和EUO之间存在可调的磁性接近性耦合。
原子 原子元素 符号 数量 质量 锕 Ac 89 (227) 铝 Al 13 26.9815386 镅 Am 95 (243) 锑 Sb 51 121.760 氩 Ar 18 39.948 砷 As 33 74.92160 砹 At 85 (210) 钡 Ba 56 137.327 锫 Bk 97 (247) 铍 Be 4 9.012182 铋 Bi 83 208.98040 硼 Bh 107 (270) 硼 B 5 10.81 溴 Br 35 79.904 镉 Cd 48 112.411 钙 Ca 20 40.078 锎 Cf 98 (251) 碳 C 6 12.011 铈 Ce 58 140.116 铯 Cs 55 132.90545 氯 Cl 17 35.45 铬 Cr 24 51.9961 钴 Co 27 58.933195 铯 Cn 112 (285) 铜 Cu 29 63.546 锔 Cm 96 (247) 达姆斯塔德 Ds 110 (281) 铍 Db 105 (268) 镝 Dy 66 162.500 镝 Es 99 (252) 铒 Er 68 167.259 铕 Eu 63 151.964 镄 Fm 100 [257] 铍Fl 114 (289) 氟 F 9 18.9984032 钫 Fr 87 (223) 钆 Gd 64 157.25 镓 Ga 31 69.723 锗 Ge 32 72.63 金 Au 79 196.966569 铪 Hf 72 178.49 钇 Hs 108 (277) 氦 He 2 4.002602 钬 Ho 67 164.93032 氢 H 1 1.008 铟 In 49 114.818 碘 I 53 126.90447 铱 Ir 77 192.217 铁 Fe 26 55.845 氪 Kr 36 83.798镧 La 57 138.90547 劳伦斯 Lr 103 (262) 铅 Pb 82 207.2 锂 Li 3 6.94 利弗莫伦 Lv 116 (293) 镥 Lu 71 174.9668 镁 Mg 12 24.3050 锰 Mn 25 54.938045 Meitnerium Mt 109 (276)