摘要 我们计划使用 NIRSpec 积分场单元 (IFU) 拍摄真正的太阳系气态巨行星类似物、标志性的 eps Eridani b 的第一张图像和光谱。Eps Eri b 是一颗已知的径向速度行星,围绕附近的类太阳恒星 (K2V) 运行,轨道距离约为 3.5 au(周期为 7.3 年),其动态质量介于土星和木星之间(0.57-0.78 MJup),这意味着它可以直接与太阳系气态巨行星进行比较。这颗青少年(4 亿至 8 亿年)亚木星是独一无二的,因为就半长轴、质量和年龄而言,它位于凌日和直接成像的系外行星之间。到目前为止,该参数空间区域无法进行光谱表征。此外,第 3 周期是观察该行星的最佳时间,因为它处于最远的投影分离状态,这种情况每 4 年才发生一次。我们将针对这颗冷亚木星的峰值通量(~140-215 K)获得 3-5 微米的 R~2,700 光谱,并首次测量其亮度、有效温度和成分(C/H、O/H、N/S)。由于第 1 周期数据证明 NIRSpec IFU 可以达到优于 JWST 日冕仪的对比度(35 分钟内 1'' 处 1e-6),因此可以直接探测到 eps Eri b。观察描述我们建议使用 NIRSpec 积分场单元(IFU;G395H/F290LP;2.87 - 5.27 微米)拍摄 eps Eridani b 的第一张图像和高分辨率光谱(R=2,700)。
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,即HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
美国宇航局的星光计划和突破摄星计划概念化了通过定向能驱动的小型相对论航天器进行快速星际旅行。这一过程与传统的太空旅行截然不同,用小型、快速、廉价和易碎的航天器取代大型和缓慢的航天器。这些晶片卫星的主要目标是在深空旅程中收集有用的图像。我们介绍并解决了伴随这一概念的一些主要问题。首先,我们需要一个物体检测系统,可以检测我们从未见过的行星,其中一些行星包含我们可能甚至不知道在宇宙中存在的特征。其次,一旦我们有了系外行星的图像,我们就需要一种方法来拍摄这些图像并按重要性对它们进行排序。设备故障,数据速率很慢,因此我们需要一种方法来确保对人类最重要的图像是优先进行数据传输的图像。最后,机载能量最小,必须节约和谨慎使用。不应错过任何系外行星图像,但错误地使用能量会造成损害。我们引入了基于模拟器的方法,利用人工智能(主要是计算机视觉)来解决这三个问题。我们的结果证实,模拟器提供了极其丰富的训练环境,远超真实图像,可用于训练模型,以研究人类尚未观察到的特征。我们还表明,模拟器提供的沉浸式和适应性环境与深度学习相结合,让我们能够以一种难以置信的方式导航和节省能源。
Ÿ Pankaj Jain,主任(雪城大学博士):天体物理学和宇宙学、射电天文学、宇宙射线、X 射线天文学Ÿ Ishan Sharma(康奈尔大学博士):行星科学、粒状小行星;力学、应用数学Ÿ Amitesh Omar(班加罗尔 RRI;JNU 博士):星系天体物理学、仪器、光学和射电天文学Ÿ Sharvari Nadkarni-Ghosh(康奈尔大学博士):理论宇宙学、行星科学、非线性动力学Ÿ Kunal P. Mooley(加州理工学院、国家射电天文台博士):天体物理瞬变、喷流、致密物体、银河系中心、宇宙中的生命。 Ÿ Prashant Pathak(博士,综合研讨大学):系外行星的特征:直接成像、透射光谱。自适应光学和波前控制技术。地面和太空光学及红外仪器 Ÿ Kartick C. Sarkar(博士,印度科学研究所和拉曼研究所):星系的形成和演化、星际介质、天体流体动力学、银河反馈、辐射传输 Ÿ Deepak Dhingra(博士,布朗大学):行星遥感和地质学 Ÿ JS Yadav(博士,库鲁克谢特拉大学):X 射线天文学、空间探测器和仪器、宇宙射线 Ÿ Avinash Deshpande(博士,印度理工学院孟买分校/RRI):射电天文学、脉冲星、射电瞬变、星际介质、仪器和信号处理
截至2023年中,至少正在开发十个任务或计划在未来20年中探索金星。大多数强调大气化学和表面/内部科学目标,只有少数直接解决了金星作为主要科学目标的过去和现在的可居住性。所有的任务都采用了以前经过经过测试的平台 - 轨道和一般大气探针,但(截至迄今为止)没有计划使用寿命更长的大气平台(例如气球或飞艇)或着陆器。因此,关于金星的几个关键问题必然会在当前的开发任务浪潮之后仍未得到答复,这将从2029年开始探索金星,并在整个2030年代继续进行。这个面向未来的观点概述了一个主要的科学问题,即维纳斯的下一个任务应该解决,以便更好地理解地球作为一个系统,并为金星类似外行星提供可靠的比较基础,这些比较基础只能通过远程观察来调查,例如詹姆斯·韦伯太空电视(James Webb Space Telescope)(James Webb Space Telescope)(J. J. J. J. J. J. J.这一下一代的金星任务可能需要长期生活的大气平台,或者在不同高度,更长的地表站,以及最终的大气/云颗粒(气溶胶)的样品和表面返回地球实验室。Although ideas for aerial platforms, long-lived landers, and missions to return atmospheric and surface samples are being conceptualized at present to be ready for upcoming international competed opportunities (e.g., NASA, ESA, ISRO, JAXA), they await further investment in technologies to provide the combination of scienti fi c measurement capabilities and fl ight-system performance to make the breakthroughs that the community will expect, guided by长期以来的科学重点。
a b s t r a c t这项工作引入了一种方法,可以通过将机器学习的替代模型整合到OASIS全球循环模型(GCM)中来增强3D大气模拟的计算效率。传统的GCM基于反复整合物理方程的传统GCM在一系列时间段的大气过程中进行了大气过程,这是时间密集的,导致了模拟的空间和时间分辨率的妥协。这项研究赋予了这一限制,从而在实际时间范围内实现了更高的分辨率模拟。加速3D模拟在多个域中具有显着含义。首先,它促进了将3D模型集成到系外行星推理管道中,从而从以前从JWST和JWST Instruments预期的大量数据中对系外行星进行了良好的表征。其次,3D模型的加速度将使地球和太阳系行星的更高分辨率模拟,从而更详细地了解其大气物理和化学。我们的方法用基于仿真输入和输出的训练的基于神经网络的复发模型代替了绿洲中的辐射传输模块。辐射转移通常是GCM最慢的组件之一,因此为整体模型加速提供了最大的范围。替代模型在金星大气的特定测试案例上进行了训练和测试,以基准在非生物大气的情况下基于这种方法的实用性。这种方法产生了令人鼓舞的结果,与在一个图形处理单元(GPU)上相比,与使用匹配的原始GCM在金星样条件下相比,在一个图形处理单元(GPU)上表明,ABO V E 99.0%的精度和147个速度的因子。
要了解系外行星和棕色矮人的高精度观察结果,我们需要详细且复杂的一般循环模型(GCM),这些模型(GCM)结合了水动力学,化学和辐射。在这项研究中,我们专门研究了GCMS中化学和辐射之间的耦合,并比较了相关化学中不同化学物种在相关性假设中混合的不同方法,当无法假设平衡化学时。我们提出了一种基于DeepSet(DS)的快速机器学习方法,该方法有效地结合了单个相关性-K的不相差(K-table)。我们与其他已发表的方法(例如自适应等效灭绝(AEE))以及与重新融资和求职(RORR)的随机重叠一起评估了DS方法。我们将这些混合方法集成到我们的GCM(Expert/MitGCM)中,并评估了它们的准确性和性能,以热木星HD 209458 b的示例。我们的发现表明,DS方法既适合GCM使用率准确又有效,而RORR太慢了。此外,我们观察到AEE的准确性取决于其特定的实现,并可能在实现辐射转移解决方案收敛时引入数值问题。然后,我们在简化的化学不平衡情况下应用了DS混合方法,在那里我们建模了Tio和Vo的雨水,并确认TIO和VO的雨水会阻碍平流层的形成。为了进一步加快GCM中一致的不平衡化学计算的发展,我们提供了文档和代码,用于将DS混合方法与相关-K辐射传递求解器耦合。DS方法已进行了广泛的测试,足以适合GCM。但是,可能需要加速大气检索的其他方法。
虽然小海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,关于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝度的物种比不可固定的背景气体重。虽然已经预测,潮湿对流可能会停止以上这些可凝结物种的阈值丰度,但该预测基于简单的线性分析,并依赖于关于大气饱和的一些有力的假设。为了调查这个问题,我们开发了一个3D云分辨模型,用于具有大量可冷凝物种的氢气大气,并将其应用于原型的温带Neptune样星球 - K2-18 b。我们的模型证实了在可凝结蒸气的临界丰度之上抑制湿对流的抑制作用,以及在此类行星大气中稳定分层层的发作,这导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但逼真的1D模型,该模型捕获了Neptune类气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用模型研究了K2-18 b上H 2域大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。
虽然小的海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,许多未知数仍然存在于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝结物种比不可接触的背景气体重。虽然已经预测,潮湿对流可能会在这些可凝结物种的某些阈值以上关闭,但该预测基于简单的线性分析,并依赖于对大气饱和度的一些强烈假设。为了调查这个问题,我们为具有大量浓缩物种的氢为主大气开发了一个3D云解析模型,并将该模型应用于原型温带海王星样星球 - K2-18 b。我们的模型证实了潮湿的对流的关闭,高于浓缩蒸气的临界丰度,并在此类行星的大气中稳定地分层层的发作,从而导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但现实的1D模型,该模型捕获了Neptune样气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用我们的模型研究了在K2-18 b上h 2主导的大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。