本文报道了由通过化学气相沉积 (CVD) 生长的单层石墨烯片制备的宏观石墨烯纤维(直径为 10 到 100 4,长度超过 2 cm)的制造和机械性能。这些石墨烯纤维的断裂强度随着对单根纤维进行连续拉伸试验测量而增加,其中从先前的测试中产生的纤维碎片表现出更大的断裂强度。此外,我们观察到表面褶皱和皱纹减少,并且它们的排列与拉伸张力方向平行。我们认为这种特性的基础是通过连续拉伸张力积累的纤维内部塑性变形。通过这种循环方法,我们最好的纤维在 1 毫米标距长度下产生了 2.67 GPa 的强度。
摘要:电导聚合物和MXENES的多功能和独家电子,光学,物理化学,电化学和机械特征都激发了全球科学家在使用这些材料设计创新的高性能存储系统方面采取严重的动力,以这些材料为机械灵活的电子技术来解决不断增长的技术技术,以解决各种材料的需求。然而,两种材料都经历了一些严重的实际限制,这使科学界以Mxenes/pani纳米复合材料的形式进行了必要的修改,并具有合适的成分,从而实质上可以恢复其代表性特征,但可以成功地抑制其功能缺陷。因此,在当前概述中,MXENES/PANI纳米复合材料制造的不同策略是为高级超级电容器制造的,特别提及合成即兴创作所带来的必要的形态修饰,从而导致了卓越的电容性,电子电荷运输以及结构性以及还认识到并进行了比较。这样的分析将有目的地有助于调整整体机械和电化学响应,以尽快对更智能和高度柔性的微电子进行策划。
摘要:拉曼光谱法已成为一种流行的分析工具,因为它能够进行非破坏性探测并提供材料的指纹信息。拉曼光谱领域的进步和应用范围的扩大保证了在正规教育课程中引入该主题。在教育课程中引入拉曼光谱分析有助于学生学习光谱基础知识。此外,组件熟悉和制造培训将帮助学生发展自己的方法来制造和定制用于特定应用的仪器。虽然许多拉曼光谱仪都可以在市场上买到,但高昂的成本使大多数学术机构都买不起。在此,我们描述了一种简单且经济有效的方法来制作一个完全集成的便携式拉曼光谱仪,并解释了一些可以在课堂上使用制造的设备进行的简单实验。关键词:研究生教育/研究、分析化学、演示、物理化学、实验室设备/仪器、定性分析、定量分析、拉曼光谱、光谱学■ 简介
PDMS是微流细胞制造的理想基础材料,可提供生物兼容性,光学透明度和对气体的渗透性。[4]例如,透明度是遵循带有光学设置的微流量流中的co-Flow或微滴生成过程的至关重要的要求。然而,使用PDMS的流动池制造涉及几个容易出现错误的过程步骤,尤其是用户,并且很难制作Complex 3D结构,需要多层制造,以预先构成深入的制造经验。因此,研究人员已经开始专注于通过3D打印来制造微流体流动池,因为其单程特征,短程序时间和易于分发的数字设计。[5–7]对微流体流细胞的3D打印的兴趣已迅速增长,这是由于该领域的公共公共事件迅速增加。[8-12]近年来,投资高分辨率的3D打印技术已付出了很多努力,以缩小可实现的最小功能大小和基于PDMS和3D打印的微流体设备之间的功能的差距。作为一种有希望的3D打印技术,投影微刻光(PμSL)引起了极大的兴趣。已经据报道,已建立的微流体模块,例如液滴发生器,[13]阀,[14]和泵[6]通过PμSL制造。更精确地量身定制了3D打印微流体的功能,已经开发了光聚合物制剂以提高透明度[15]和PμSL打印的细胞培养环境或生物传感器的长期生物相容性。[16]
实现对实际应用的高灵敏度一直是可穿戴柔性压力传感器的主要发育方向之一。本文引入了激光斑点灰度光刻系统和一种新的方法,用于使用颗粒状激光斑点图案制造随机锥形阵列微观结构。其可行性归因于激光斑点强度的自相关函数,该功能遵循第一类的一阶Bessel函数。通过客观的斑点尺寸和暴露剂量操纵,我们开发了具有各种微形态的微结构光蛋白天。这些微结构用于形成用于柔性电容压力传感器中的聚二甲基硅氧烷微结构电极。这些传感器表现出超高灵敏度:低压范围为0 –100 pa的19.76 kPa -1。它们的最小检测阈值为1.9 pa,它们保持稳定性和弹性超过10,000个测试周期。这些传感器被证明擅长捕获生理信号并提供触觉反馈,从而强调其实际价值。
1卫生科学学院,国家和卡普迪斯特里大学雅典大学,Panepistimiopolis,15771年,希腊Zografou; elminasait@pharm.uoa.gr(E.-M.S.); natpippa@pharm.uoa.gr(n.p。); ppapakyr@pharm.uoa.gr(P.P.)2化学学院,化学跨学科项目(CHIP),卡梅利诺大学,麦当娜·德尔·卡塞里(Madonna Delle Carceri),意大利卡梅利诺(Camerino)62032; diego.perinelli@unicam.it(D.R.P.); giulia.benacucina@unicam.it(g.b。)3聚合物和碳材料中心,波兰科学院,34,M。Curie-Skłodowskiejst,41-819 Zabrze,波兰; aforys@cmpw-pan.pl(A.F.); barbara.trzebicka@cmpw-pan.edu.pl(B.T.)4生物学实验室,基础医学系,医学院,国家和雅典Kapodistrian大学,希腊11527雅典; nlagopati@med.uoa.gr(N.L.); mgazouli@med.uoa.gr(M.G.)5雅典学院生物医学研究基金会,希腊雅典11527年6理论和物理化学研究所,国家希腊研究基金会,瓦西洛斯·康斯坦丁·康斯坦丁乌大街48号,希腊雅典11635年; pispas@eie.gr *通信:valsami@pharm.uoa.gr
该研究项目的目的是通过提供适当的细胞外基质(ECM)提示来完善诱导的多能干细胞(IPSC)神经元模型。IPSC技术提供了前所未有的对人类中枢神经系统的访问,并使模型的构建能够研究神经发育和神经系统疾病机制。但是,IPSC衍生的神经元的培养物具有局限性,例如形态成熟,突触连通性和电生理活性。的确,转录分析表明它们类似于晚期胚胎的神经元与早期产后阶段,这阻碍了成人发作神经退行性疾病的研究。我们假设缺乏适当的时空ECM信号是这些局限性的主要因素。ECM是一种复杂组织的分泌蛋白质和复杂糖的细胞间支架,可在整个中枢神经系统中配置时空微环境。它为神经元提供了关键的结构支持,可作为可溶性因子的储层,并介导调节神经元发育,成熟和衰老的细胞信号传导。然而,中枢神经系统中源自定义为ECM和ECM相关蛋白的合奏的时间多样性和功能效应的特征很差。因此,不可能培养IPSC衍生的神经元的体外平台设计,这些神经元真正概括了生理ECM。在这里,我们将首先使用生化纯化和定量质谱法(MS)的蛋白质组学来定义体内人CNS基质组重塑的组成和性质。然后,我们将利用IPSC技术和生物材料的联合专业知识来建立ECM模拟矩阵,这些矩阵可以概括生理基质组的结构和调节活性,以促进2D和3D干细胞衍生细胞衍生的神经模型的成熟和衰老。
1989 年 - Darrell W. Jesse Jesse Engineering Co. 1990 年 - Merv Wark Yakima Steel Fabricators, Inc. 1991 年 - Steve Norquist Western Steel Mfg. Co. 1992 年 - Terry Aarnio Oregon Iron Works, Inc. 1993 年 - Dave Williams Universal Structural, Inc. 1994 年 - Dave Williams Universal Structural, Inc. 1995 年 - Ron Duquette Ideal Steel, Inc. 1996 年 - Keith Mabin Richardson Metal Works, Inc. 1997 年 - Jeff Gellert Jesse Engineering Co. 1998 年 - David Marks Marks Metal Technology 1999 年 - David Marks Marks Metal Technology 2000 年 - Greg Duthie Standard Steel Fabricating Co., Inc. 2001 年 - John Robertson Robertson Grating Products, Inc. 2002 年 - Paul Davis Redi-Fab, Inc. 2003 年 - Tom Hickman Oregon Iron Works, Inc. 2004 - Jeff Hayes Brooklyn Iron Works 2005 - Jeff Hayes Brooklyn Iron Works 2006 - Drew Park Columbia Wire & Iron Works, Inc. 2007 - Drew Park Columbia Wire & Iron Works, Inc. 2008 - Jim Duthie Standard Steel Fabricating Co., Inc. 2009 - Gust Erickson Jesse Engineering Co. 2010 - Alan Halamay Fought & Co., Inc.
1989 - Darrell W. Jesse Jesse Engineering Co. 1990 - Merv Wark Yakima Steel Fabricators, Inc. 1991 - Steve Norquist Western Steel Mfg.Co. 1992 - Terry Aarnio Oregon Iron Works, Inc. 1993 - Dave Williams Universal Structural, Inc. 1994 - Dave Williams Universal Structural, Inc. 1995 - Ron Duquette Ideal Steel, Inc. 1996 - Keith Mabin Richardson Metal Works, Inc. 1997 - Jeff Gellert Jesse Engineering Co. 1998 - David Marks Marks Metal Technology 1999 - David Marks Marks Metal Technology 2000 - Greg Duthie Standard Steel Fabricating Co., Inc. 2001 - John Robertson Robertson Grating Products, Inc. 2002 - Paul Davis Redi-Fab, Inc. 2003 年 - Tom Hickman Oregon Iron Works, Inc. 2004 年 - Jeff Hayes Brooklyn Iron Works 2005 年 - Jeff Hayes Brooklyn Iron Works 2006 年 - Drew Park Columbia Wire & Iron Works, Inc. 2007 年 - Drew Park Columbia Wire & Iron Works, Inc. 2008 年 - Jim Duthie Standard Steel Fabricating Co., Inc. 2009 年 - Gust Erickson Jesse Engineering Co. 2010 年 - Alan Halamay Fought & Co., Inc.
1989 年 - Darrell W. Jesse Jesse Engineering Co. 1990 年 - Merv Wark Yakima Steel Fabricators, Inc. 1991 年 - Steve Norquist Western Steel Mfg. Co. 1992 年 - Terry Aarnio Oregon Iron Works, Inc. 1993 年 - Dave Williams Universal Structural, Inc. 1994 年 - Dave Williams Universal Structural, Inc. 1995 年 - Ron Duquette Ideal Steel, Inc. 1996 年 - Keith Mabin Richardson Metal Works, Inc. 1997 年 - Jeff Gellert Jesse Engineering Co. 1998 年 - David Marks Marks Metal Technology 1999 年 - David Marks Marks Metal Technology 2000 年 - Greg Duthie Standard Steel Fabricating Co., Inc. 2001 年 - John Robertson Robertson Grating Products, Inc. 2002 年 - Paul Davis Redi-Fab, Inc. 2003 年 - Tom Hickman Oregon Iron Works, Inc. 2004 - Jeff Hayes Brooklyn Iron Works 2005 - Jeff Hayes Brooklyn Iron Works 2006 - Drew Park Columbia Wire & Iron Works, Inc. 2007 - Drew Park Columbia Wire & Iron Works, Inc. 2008 - Jim Duthie Standard Steel Fabricating Co., Inc. 2009 - Gust Erickson Jesse Engineering Co. 2010 - Alan Halamay Fought & Co., Inc.