我们研究了有限温度和边缘引起的对电荷和电流密度的影响,该电荷位于磁通量螺纹的2D锥形空间上。场算子在圆形边界上受约束,与圆锥形顶点,袋边界条件以及条件在术语前面的相反符号的条件约束。在二维空间中存在两个clifford代数的不相等表示,并为实现这些表示形式的两个字段提供了分析。圆形边界将锥形空间分为两部分,称为内部(I-)和外部(E-)区域。径向电流密度消失。对于一般的化学势情况,在两个区域中,电荷的预期值和方位角电流密度都明确分离。它们是磁通量的周期性功能和奇数功能,在磁通量和化学势的迹象的同时变化下。与文献中先前考虑的费米凝结物的重要差异是,当观测点趋于边界时,平均电荷和当前密度在极限中是有限的。在电子区域中,所有旋转模式都是规则的,总电荷和电流密度是磁通量的连续功能。在I区中,相应的期望值是在磁通量与通量量子之比的半数值下不连续的。这些不连续性来自I区中不规则模式的贡献。2D费米子模型,在奇偶校验和时间反向转换下(在没有磁场的情况下)结合了两个旋转磁场,意识到克利福德代数的不相等表示。讨论了这些模型中的总电荷和当前密度,以针对单独字段的边界条件的不同组合进行讨论。在2D Dirac模型描述的石墨锥中讨论了电子子系统的应用。
费米子多体量子系统的数值建模介绍了各个研究领域的类似challenges,需要使用通用工具,包括现状的机器学习技术。在这里,我们介绍了Solax,这是一个python库,旨在使用第二个量化的形式主义来计算和分析费米子量子系统。Solax提供了一个模块化框架,用于构建和操纵基础集,量子状态和操作员,促进电子结构的模拟并确定有限尺寸的Hilbert空间中的多体量子状态。库集成了机器学习能力,以减轻大量子群中希尔伯特空间尺寸的指数增长。使用最近开发的Python库Jax实现了核心低级功能。通过将其应用于单个杂质Anderson模型的应用,为研究人员提供了一种灵活而强大的工具,可用于应对各种领域的多体量子系统的挑战,包括原子物理学,量子化学和凝结物理学。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
该模型的厄米性保证了具有实特征值的能量守恒,但当量子系统与其环境交换粒子和能量时,该模型的厄米性就会失效。这种开放的量子系统可以用非厄米哈密顿量有效地描述,为量子信息处理、弯曲空间、非平凡拓扑相甚至黑洞提供了重要的见解。然而,许多关于非厄米量子动力学的问题仍未得到解答,尤其是在高维空间中。
“奇怪的金属”具有电阻率,具体取决于降低到低t的温度,这是凝结物理学的长期难题。在这里,我们考虑了通过现场哈伯德相互作用和有限限制的自旋 - 旋转相互作用的静脉自旋1 /2 fermions的晶格模型。我们表明,通过电荷闪光与旋转玻璃相熔化相关的量子临界点显示非fermi液体行为,局部自旋动力学与Sachdev-ye-Kitaev模型家族的局部自旋动力学相同。这扩展了先前在SU(M)对称模型的巨大极限上建立的量子自旋液体动力学,以对具有SU(2)Spin-1 /2电子的模型。值得注意的是,量子临界方案还具有与T线性散射速率相关的Planckian线性电阻率和与边缘费米液体现象学一致的电子自我能源的频率依赖性。
人们普遍认为,量子力学中只有两种类型的粒子交换统计数据,即费米子和玻色子,二维中的任意子除外 1–5 。原则上,第二种例外被称为准统计数据,它延伸到二维之外,曾被视为 6 但被认为在物理上等同于费米子和玻色子 7–9 。本文我们表明,物理系统中可以存在与费米子或玻色子都不等价的非平凡准统计数据。这些新型全同粒子遵循广义不相容原理,从而产生不同于任何自由费米子和玻色子的奇异自由粒子热力学。我们通过开发准粒子的第二种量化来制定我们的理论,该量化自然包括完全可解的非相互作用理论并结合局部性等物理约束。然后,我们构建了一维和二维的精确可解量子自旋模型系列,其中自由准粒子以准粒子激发的形式出现,它们的交换统计数据可以在物理上观察到,并且与费米子和玻色子明显不同。这表明凝聚态系统中可能存在一种新型准粒子,而且从更推测的角度来看,可能存在以前未考虑过的基本粒子类型。
1 阿贡国家实验室,美国伊利诺伊州莱蒙特 60439 2 罗伯特·博世有限公司企业部门研究和先进工程,Robert-Bosch-Campus 1,D-71272 Renningen,德国 3 IBM Research,里约热内卢,20031-170,RJ,巴西 4 巴西物理研究中心,里约热内卢,22290-180,RJ,巴西 5 CINECA,via Magnanelli 6/3,40033 Casalecchio di Reno,BO,意大利 6 亚利桑那州立大学,亚利桑那州坦佩,美国 7 国家能源研究科学计算中心,劳伦斯伯克利国家实验室,加利福尼亚州伯克利,美国 8 多诺斯蒂亚国际物理中心 (DIPC),20018 多诺斯蒂亚-圣塞瓦斯蒂安,巴斯克,西班牙 9 Ikerbasque,巴斯克科学基金会, 48009 毕尔巴鄂,西班牙 10 延世大学物理系,首尔 03722,韩国 11 芝加哥大学,美国伊利诺伊州芝加哥 12 IBM Quantum,IBM TJ Watson 研究中心,纽约州约克敦高地 10598,美国 13 剑桥咨询公司,凯捷创新公司的一部分,英国剑桥 14 欧洲核子研究中心 (CERN),瑞士日内瓦 1211 15 弗吉尼亚理工大学,弗吉尼亚州布莱克斯堡 24061,美国 16 洛斯阿拉莫斯国家实验室,新墨西哥州洛斯阿拉莫斯 87545,美国 17 大阪大学,日本大阪 560-8531 18 芝加哥大学理论化学中心化学系,美国伊利诺伊州芝加哥 19 Fraunhofer ITWM,德国莱茵兰-普法尔茨州凯泽斯劳滕 67663 20 Infleqtion,伊利诺伊州芝加哥60622,美国 21 伊利诺伊大学厄巴纳-香槟分校 22 密歇根大学,密歇根州安娜堡 48109,美国 23 戴尔科技公司,研究办公室 24 橡树岭国家实验室,One Bethel Valley Road,橡树岭,田纳西州 37831,美国 25 日本理化学研究所计算科学中心 (R-CCS),兵库县神户 650-0047,日本 26 多伦多大学化学系化学物理理论组,安大略省多伦多 M5S 3H6,加拿大
量子信息和量子多体物理学的一个特别有趣的接口是研究量子电路,它代表量子粒子或材料物理学中系统的(幺正)时间演化。这些电路最基本的形式是“砖墙”电路,其属性由代表墙上一块砖的 2 量子比特门的选择决定。这种类型的研究通常选择两种极端选择之一:要么假设随机选择 2 量子比特幺正([ 1 ] 及其参考文献),要么相反,选择一个结构化的 2 量子比特门,从而对幺正砖墙 (UBW) 电路进行一定程度的分析控制。事实上,如果将 2 量子比特门选为满足杨-巴克斯特恒等式的所谓 R 矩阵,则可以安排相应的 UBW 电路,使其作为算子与大量守恒电荷进行交换。请参阅 [ 2 – 4 ],其中提出并分析了此过程;[ 5 – 7 ],其中研究了此类电路以及与“可积 trotterization”相关的一系列物理现象。参考文献 [ 8 ] 特别将这些想法应用于 XXX 可积自旋 1/2 海森堡磁体的 R 矩阵,并分析了其守恒电荷,包括解析分析和量子计算硬件上的实现。我们指出了利用类似概念的其他实验 [ 9 , 10 ]。
量子模拟模仿一个量子系统与另一个人工组织的量子系统(即量子模拟器)的演化[1]。具有量子比特的数字量子模拟器可以对由各种粒子(如自旋、费米子和玻色子)组成的任意量子系统进行精确或近似编码,具体取决于粒子的性质。量子比特可以通过多种物理系统实现,如捕获离子[2,3]、核磁共振(NMR)[4,5]、超导电路[6,7]、量子点[8]和光子[9]。因此,无论模拟器的物理性质如何,我们都可以使用适当的量子比特编码协议用数字量子模拟器模拟任何量子系统。在各种多粒子量子系统中,玻色子系统被认为从数字量子模拟中受益匪浅。 Knill、Laflamme 和 Milburn (KLM) 证明后选择线性光学能够进行通用量子计算 [10]。此外,Aaronson 和 Arkhipov [11] 提出的玻色子采样也是证明量子器件计算优越性的有力候选者。玻色子采样问题被认为属于经典的难采样问题。受非相互作用玻色子系统计算能力的启发,提出了几种玻色子到量子比特编码 (B2QE) 协议,以使用数字量子计算机模拟玻色子问题 [12-18]。大多数研究直接使用 Fock 态的一元或二元量子比特表示作为量子比特编码协议,将玻色子产生和湮灭算子离散化。参考文献 [15] 提出了一种用于线性和非线性光学元件的数字量子模拟方法。参考文献[ 17 ] 基于文献 [ 19 ] 开发的玻色子-量子比特映射,使用 IBM Quantum 模拟了束分裂和压缩算子。所需资源(例如量子比特和门的数量)因编码协议而异。文献 [ 18 ] 比较了不同编码协议之间的资源效率。在本文中,我们结合 Shchesnovich [ 20 ] 分析的玻色子-费米子对应关系和费米子到量子比特编码 (F2QE) 协议 [ 21 , 22 ],提出了一种替代的多玻色子数字模拟方法。具体而言,我们的协议将玻色子态转换为具有内部自由度的费米子态,然后通过 F2QE 协议(Jordan-Wigner (JW) 变换)将其转换为量子比特态。在我们的模拟模型中,具有 M 个 N 量子比特束的量子电路可以模拟 M 模式下 N 个玻色子的数量守恒散射过程。我们的协议总结如图 1 所示。我们的协议最显著的优势是,它可以使用量子比特数的直接扩展来有效地模拟非理想的部分可区分玻色子,即具有内部自由度的玻色子。作为概念证明,我们使用我们的协议生成了 Hong-Ou-Mandel (HOM) 倾角 [ 23 ]。HOM 效应在光量子系统中非常重要,它为线性光量子计算系统中的逻辑门提供基本资源。参考文献 [ 24 ] 讨论了 HOM 效应与基于量子比特的 SWAP 测试之间的正式联系。为了模拟 HOM 倾角,我们需要一种方法来为光子添加内部自由度。在我们的例子中,通过将量子比特数增加两倍就可以轻松实现,这表明我们的协议适合模拟部分可区分的玻色子。我们使用 IBM Quantum 和 IonQ 云服务验证了电路的有效性。本文结构如下:第 2 部分介绍我们的数字玻色子模拟协议。在回顾了玻色子-费米子变换协议之后,我们展示了如何将此变换与 JW 变换相结合进行数字玻色子模拟。在第 3 部分中,我们将模型应用于 HOM 倾角实验。我们用一个八量子比特电路模拟双光子部分区分性。最后,第 4 部分总结我们目前的工作并讨论其未来可能的扩展。
马约拉纳零模式 (MZM) 是拓扑保护量子计算硬件的有希望的候选者,然而它们的大规模使用可能需要量子纠错。马约拉纳表面码 (MSC) 已被提议实现这一目标。然而,许多 MSC 属性仍未得到探索。我们提出了一个统一的 MSC“扭曲缺陷”框架——编码量子信息的任意子类对象。我们表明,MSC 中的扭曲缺陷可以编码两倍于基于量子位的代码或其他 MSC 编码方案的拓扑保护信息量。这是因为扭曲同时编码了逻辑量子位和“逻辑 MZM”,后者增强了微观 MZM 可以提供的保护。我们解释了如何使用逻辑量子位和逻辑 MZM 执行通用计算,同时可能使用比其他 MSC 方案少得多的资源。所有 Clifford 门都可以通过编织扭曲缺陷在逻辑量子位上实现。我们介绍了基于格子手术的逻辑 MZM 和逻辑量子位计算技术,实现了 Clifford 门的效果,且时间开销为零。我们还表明,逻辑 MZM 可能会在足够低的准粒子中毒率下改善空间开销。最后,我们介绍了一种新颖的 MSC 横向门模拟,通过编织微观 MZM 实现小代码中的编码 Clifford 门。因此,MSC 扭曲缺陷为容错量子计算开辟了新途径。