金属有机框架是一类多孔材料,在微电子领域显示出有希望的特性。为了达到这些材料的工业用途,通常首选气相技术,并最近引入。但是,所达到的厚度是不够的,限制了进一步的发展。在这项工作中,描述了允许使用环状配体/水暴露的数百个NM形成数百个NM的改进的气相过程。然后,通过深入的表面分析和分子动力学模拟的组合,建立了羟基缺陷在ZIF-8层中的存在和作用,以达到这种厚度。同时,这项研究揭示了该方法的固有限制:厚度生长是结合的,缺陷在晶体成熟时修复;这种缺陷修复最终导致孔窗窗口的下降下方的孔窗口的扩散半径下降,因此显然可以通过这种生长方法来限制这类材料拓扑的最大MOF厚度。
摘要微生物学影响的腐蚀对水下考古遗址的影响刺激了研究的最新进展,研究了微生物与历史保护之间的联系。尽管钢铁残骸地点的微生物组一直是DNA测序研究和其他学科研究的主题,但铝制飞机残骸是第二次世界大战的突出象征,尚未成为类似研究的重点。本文代表了通过描述用于从夏威夷岛附近的第二次世界大战飞机站点获得样品的生物膜收集方法来填补这一空白的初步尝试。而不是依靠代理在沉船上或破坏性抽样上的微生物生长,而是重点是一种生产力但微不足道的方法论。协议导致了四个淹没飞机残骸的原位生物膜样品成功归类。该方法被发现负担得起,时间有效且可再现,因此对于考古站点管理而言是可行的。生物膜的可行原位收集方法的发展应有助于努力评估微生物学影响与淹没飞机的腐蚀的相关性,同时可以对微生物进行纵向研究,从而可能影响现场保存。
在XXI世纪初发现石墨烯并研究了其有希望的性质[1] [1]逐渐出现,并且仍然相关[2,3]对研究二维(2D)材料,尤其是分层金属辣椒素[4,5]的兴趣。层状金属chalco-天鹅是有前途的材料,可用于微电子,光子学和光伏的材料,因为它们具有半导体,金属,介电特性和拓扑绝缘剂的性能[6]。金属硫化剂的分子层的接近1 nm厚度以及它们之间存在弱的范德华键的存在提供了高机械柔韧性和对变形的抗性,从而产生了在柔性电子中的使用潜力[7,8]。由于物理特性的多样性,可以将分层的金属硫化剂用于各种应用,例如。 g。,MOS 2,BI 2 TE 3和2 SE 3中具有紫外线的高电磁发射吸附系数至接近红外范围[9]。结果,基于金属辣椒剂的范德华异质结构具有在功能设备的设计中使用其电子和光电特性的巨大潜力[10]。在2 SE 3中层层层次,最杰出的代表之一是在其基础上创建太阳能照片,光电探测器和存储设备的2 se 3 [6,11,12]。例如,最近在2 SE 3中至少有八个阶段已经在实验中找到并在理论上进行了预测,而不是许多金属辣椒剂,尤其是在2 SE 3中,其特征是存在具有相同化学计量的多态性修饰(相),但具有不同的结构和电子特性。
Zhiqin Chu受到启发,使用粘性胶带通过单层石墨烯发现故事从硅表面上删除钻石胶片。Konstantin Novoselov和Andre Geim赢得了2010年诺贝尔物理奖,因为您可以使用粘性胶带从石墨(铅笔线索中的材料)剥离一层石墨烯。
在此,我们的注意力集中在热螺旋的Sodo-Niobate无定形薄膜的二阶光学特性上,该纤维薄膜通过原始的甲型膜结合了宏观和显微镜第二次谐波生成技术。通过探测不同尺度上二阶非线性(SONL)光学响应的几何形状和幅度,与散装玻璃相比,薄膜的poling机制的关键方面证明了这一点在于,在胶体/底物界面和Maxwell所描述的是电荷积累的外观。然后,通过使用微结构电极促进膜片平面中诱导的内置静态场来证明一种最小化这种效果的方法。测量了SONL光敏感性高达29 pm V 1,其几何形状和位置以微米尺度控制;与其他无机材料相比,它构成了至少一个数量级的改善,并且与硝酸锂单晶相当。
随着新的ThinFilm IR的开发:6芯片技术AMS OSRAM增加了基于IR的应用程序(例如生物识别身份验证和安全摄像机)的价值,从而在延长电池运行时产生了更明亮的IR照明和图像质量。Oslon®P1616提供了出色的功率 /尺寸比,结合了不同的半角度,可以适应应用程序的需求。
无论吸烟习惯如何,这种性别差异在牙周炎期间在龈下微环境水平上尤为明显,龈下微环境是与宿主免疫系统积极交互的部位。这种微菌群失调可能会对免疫产生影响的假设得到了疾病和女性特异性免疫系统激活的证据的支持,就牙周炎女性特有的牙周细菌特异性抗体而言。
L. Rebohle 1、A. Quade 2、T. Schumann 1、D. Blaschke 1、R. Hübner 1、R. Heller 1、R. Foest 2、J.
汽车对设备在高应力和恶劣工作条件下运行的要求越来越严格。在这种情况下,钝化层在确定电气性能和可靠性方面起着根本性的作用。本研究重点关注应用于最先进功率器件的一次和二次钝化层及其对可靠性的影响。使用标准模块封装中组装的功率二极管作为测试载体,并进行高压温度湿度偏置测试以对结构施加应力。完整的故障模式分析突出了钝化层退化背后的现象。通过应用特定的无机和有机层组合来评估不同的钝化方案。最后,总结了典型的退化机制和相互作用。
摘要近年来,范德华(Van der Waals)材料中表面声子极地(SPHP)的激发受到了纳米光子学界的广泛关注。alpha相钼三氧化物(α-MOO 3),一种天然存在的双轴双曲晶体,由于其在不同波长带的三个正交指导下支持SPHP的能力(范围10-20 µM),因此出现是一种有前途的极性材料。在这里,我们报告了大面积(超过1 cm 2尺寸)的制造,结构,形态和光学IR表征,α -moo 3多晶膜通过脉冲激光沉积沉积在熔融二氧化硅底物上。由于随机晶粒分布,薄膜在正常发生率下未显示任何光学各向异性。但是,提出的制造方法使我们能够实现单个α相,从而保留与α -moo 3片的语音响应相关的典型强分散体。报告了IR光子学应用的显着光谱特性。例如,在1006 cm -1处具有极化的反射峰,动态范围为∆ r = 0.3,共振Q因子在45°的入射角下观察到高达53的共振Q。此外,我们报告了SIO 2底物的阻抗匹配条件的实现,从而导致独立于极化的几乎完全完美的吸收条件(R <0.01)在972 cm-1处,该条件可维持以较大的入射角维持。在此框架中,我们的发现似乎非常有前途的,对于使用远场检测设置,用于有效和大规模的传感器,滤镜,过滤器,热发射器和无标签的生物化学传感设备,用于进一步开发无IR线印刷膜,可扩展的膜,用于高效和大规模的传感器,过滤器,热发射器和无标签的生化感应设备。