V. Bouquet、F. Baudouin、Valérie Demange、S. Députier、Sophie Ollivier 等人。二维氧化物纳米片种子层对化学溶液沉积合成的 (100)BiFeO3 薄膜生长的影响。《薄膜固体》,2020 年,E-MRS 氧化物薄膜 VII,693,第 137687 页。�10.1016/j.tsf.2019.137687�。�hal-02378433�
Axel Rouviller、Moussa Mezhoud、Alex Misiak、Meiling Zhang、Nicolas Chery 等人。磁控溅射生长的钒酸锶薄膜的结构、电学和光学特性。ACS Applied Electronic Materials,印刷中,6 (2),第 1318-1329 页。�10.1021/acsaelm.3c01642�。�hal-04400444�
拓扑绝缘体是凝聚态物理学中很有前途的材料,因为它们具有特殊的自旋结构,可以产生非常高的自旋到电荷电流相互转换,这对于新兴的低能耗自旋电子学器件具有重要意义。本研究的目的是探索一类有前途的拓扑材料,这些材料具有高可调性等独特特性——半赫斯勒。我们专注于 PdYBi 和 PtYBi 薄膜的外延生长,这些薄膜是在一系列互连的 UHV 装置上生长和表征的,这使我们能够获得一整套原位表面表征,例如电子衍射、扫描隧道显微镜和角度分辨光电子能谱。使用标准 x 射线衍射和扫描透射电子显微镜进行非原位结构表征,用于控制薄膜中的晶体质量和化学有序性。进行了角分辨光电子能谱分析,结果显示布里渊区点附近存在线性状态。此外,我们使用设计了几何形状的片上器件进行热自旋传输测量,以控制热传播,以测试我们化合物的潜在相互转换效率,发现 PdYBi 和 PtYBi 在不同厚度下的自旋塞贝克系数值都大于铂。这一观察结果为使用半赫斯勒开发高效自旋相互转换材料开辟了道路。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
研究了不同 Ge 含量的 Ge-rich-Al 2 O 3 薄膜在热刺激下光学和结构特性的演变。发现无论 Ge 含量如何,沉积态薄膜和在 TA 550 C 下退火的薄膜都是非晶态的。非晶态 Ge 团簇在 TA = 550 C 时形成,而在 TA = 600 C 时它们的结晶化最为明显,Ge 含量越高,退火时间越短。在 TA = 550 C 下退火的薄膜显示出宽广的光致发光光谱。其形状和强度取决于 Ge 含量和激发能量。在 TA = 600 C 下退火会导致出现额外的 UV 带,这些带源自 GeO x 相覆盖的 Ge 团簇的形成。对激发光谱进行了分析,以区分这些薄膜中的发光机制,并区分 Ge 相(非晶团簇和/或纳米晶体)中载流子复合的贡献以及通过界面或宿主缺陷的贡献。还估算了自由载流子的浓度和迁移率。
Kevin Robert、Didier Stiévenard、D. Deresmes、Camille Douard、Antonella Iadecola 等人。高性能片上微型超级电容器的伪电容性氮化钒厚膜电荷存储机制的新见解。能源与环境科学,2020 年,13 (3),第 949-957 页。�10.1039/c9ee03787j�。�hal-02553060�
目的:慢性伤害也是一个公共卫生问题,有必要开发和应用新材料以促进伤口愈合的更令人满意的结果。因此,这项研究旨在基于与Zn 2+交联的κ-甲rage素和藻酸钠的组合开发天然聚合物膜,以控制莫皮罗辛(MUP)。方法:使用振动光谱(拉曼和红外光谱)来表征化学结构和交联过程。微拉曼成像和扫描电子显微镜分别观察了聚合物的空间分布和样品的形态。对膜的质量,厚度和MUP浓度(MUP释放动力学及其杀菌活性)进行了分析。结果:膜在厚度,质量和MUP数量方面表现出良好的均匀性。但是,抗生素的百分比低于添加的抗生素百分比,表明在膜生产过程中损失。肿胀和释放动力学研究表明膜和受控药物输送过程的肿胀能力良好。使用抑制方法,确定了膜的抗菌活性,以金黄色葡萄球菌,大肠杆菌,表皮葡萄球菌和铜绿假单胞菌的形式确定。所有产生的薄膜均显示出对这些细菌生长的活性。结论:结果说明了在聚合物膜中使用κ-carrageenan和藻酸钠来调节MUP的潜力,目的是开发可改善伤口愈合结果的伤口敷料。
1斯坦福材料与能源科学研究所,SLAC国家加速器实验室,Menlo Park,CA 94025,美国2美国2号物理系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国3美国3号应用物理系,斯坦福大学,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国加利福尼亚州94305,美国40年5月5日,美国40号。固体化学物理研究所,01187德国,德国6卡夫利研究所,位于康奈尔大学康奈尔大学,康奈尔大学,康奈尔大学,纽约,纽约,14850,美国 *使用外延菌株以薄膜形式以薄膜形式的环境压力超导性。最近,在压缩的双层镍薄膜中已经观察到超导性的迹象,其起源温度超过40 K,尽管具有宽阔和两步状的过渡。在这里,我们报告了压缩性的LA 2 PRNI 2 O 7薄膜中的内在超导性和正常状态转运性能,这些薄膜通过等值的PR替代,生长优化和精确的Ozone退火来实现。超导的开始发生在48 K以上,零电阻达到30 K以上,而在1.4 K时的临界电流密度比以前的报告大100倍。正常状态电阻率表现出二次温度依赖性,指示了费米液体行为,而其他现象学相似性与过度库酸酯中的运输相似,这表明其新兴特性的相似之处。
摘要 微生物生物膜是包裹在细胞外基质内的复杂而有结构的微生物群落,由于其广泛存在并对包括制药在内的各个行业产生重大影响而受到关注。本研究旨在探讨微生物生物膜在制药应用中的挑战、机制和创新解决方案。生物膜的形成涉及附着、定植、成熟和分离的顺序过程,由复杂的微生物相互作用和胞外聚合物 (EPS) 的分泌驱动,对此进行了详细讨论。在制药领域,生物膜在多个方面带来了显著的挑战。最关键的问题之一是生物膜相关微生物对抗菌剂的耐药性增强。EPS 基质充当屏障,阻止药物渗透并保护细胞免受抗生素的影响。这种耐药性导致与医疗器械、慢性伤口和各种生物膜介导疾病相关的持续性感染。在制药制造中,生物膜会污染生产场所、设备和药品,导致药品质量和安全性受损。此外,生物膜的存在使药物测试和开发变得复杂。传统方法主要侧重于浮游细胞,可能无法准确预测新药对生物膜相关感染的疗效,因此需要开发创新的测试方法。为了应对这些挑战,专业人士正在积极探索预防、管理和治疗生物膜相关问题的策略。这些方法包括破坏生物膜的形成、增强药物通过 EPS 基质的渗透性以及开发专门针对生物膜的新型抗菌剂。此外,成像技术和生物材料设计的进步为制药行业监测和预防生物膜的形成提供了有希望的途径。
由于具有 CMOS 兼容性和可扩展性的特点,HfO 2 基铁电体是下一代存储器件的有希望的候选材料。然而,它们的商业化受到可靠性问题的极大阻碍,疲劳是一个主要障碍。我们报告了界面设计的 Hf 0.5 Zr 0.5 O 2 基异质结构的无疲劳行为。构建了一个相干的 CeO 2- x /Hf 0.5 Zr 0.5 O 2 异质界面,其中 CeO 2- x 充当“氧海绵”,能够可逆地接受和释放氧空位。这种设计有效地缓解了电极-铁电界面处的缺陷聚集,从而改善了开关特性。此外,设计了一种对称电容器架构来最大限度地减少印记,从而抑制了循环引起的定向缺陷漂移。这种双管齐下的技术可以减轻氧伏安法产生的化学/能量波动,抑制顺电相的形成和极化退化。该设计确保 Hf 0.5 Zr 0.5 O 2 基电容器具有超过 10 11 次开关循环的无疲劳特性和超过 10 12 次循环的耐久寿命,以及出色的温度稳定性和保持性。这些发现为开发超稳定的氧化铪基铁电器件铺平了道路。