限制在光学晶格中的极性分子是一个多功能平台,可用于探索基于强、长程偶极相互作用的自旋运动动力学 1,2。Ising 和自旋交换相互作用在微波和直流电场下的精确可调谐性 3 使分子系统特别适合于设计复杂的多体动力学 4–6 。在这里,我们使用 Floquet 工程 7 来实现极性分子的新型量子多体系统。使用在超冷 40 K 87 Rb 分子的两个最低旋转状态中编码的自旋,我们通过观察 Ramsey 对比动力学相互验证了由 Floquet 微波脉冲序列调整的 XXZ 自旋模型与由直流电场调整的模型。该验证为实现静态场无法实现的哈密顿量奠定了基础。特别地,我们观察到了双轴扭曲 8 平均场动力学,它是由 Floquet 设计的 XYZ 模型使用二维层中的巡回分子产生的。未来,弗洛凯设计的哈密顿量可以产生纠缠态,用于基于分子的精密测量9,或者可以利用丰富的分子结构进行多级系统的量子模拟10,11。
27. 会议“凝聚态和冷原子系统中的拓扑相”,香港科技大学先进研究中心,香港,2015年11月-12月19日,主题为“Floquet工程人工规范场和拓扑能带结构”。
floquet(周期性)驾驶最近已成为工程量子系统的强大技术,并实现了物质的非平衡阶段。在这种系统中稳定量子现象的核心挑战是需要防止驾驶场上的能量吸收。幸运的是,当驱动器的频率明显大于多体系统的局部能量尺度时,会抑制能量吸收。这种所谓的prethermal制度的存在敏感地取决于相互作用的范围和多个驱动频率的存在。在这里,我们报告了在钻石中强烈相互作用的偶极自旋合奏中浮质细胞化的观察,其中偶尔偶联的角度依赖性有助于减轻相互作用的长期性质。此外,我们将实验性观察扩展到具有多个不稳定频率的准浮动驱动器。与单个频率驱动器相反,我们发现prethermalization的存在对应用场的平滑度极为敏感。我们的结果打开了稳定和表征非平衡现象的大门。
引言。周期性驱动的量子系统规避了平衡态下施加的某些限制。例如,参考文献 [1,2] 中设想的自发破坏时间平移对称性的“时间晶体”不能在平衡态 [3] 下出现,但可以在周期性驱动下出现。在周期性驱动的时间晶体中,任何物理(即非猫)状态都以驱动频率的次谐波演化 [4 – 6] 。规范实现由无序的伊辛自旋组成,它们在每个驱动周期后集体翻转,因此需要两个周期才能恢复其初始状态。实验已经在驱动冷原子 [7,8] 和固态自旋系统 [9 – 11] 中检测到时间晶体性的迹象。作为第二个密切相关的例子,考虑一个一维 (1D) 自由费米子拓扑超导体,它具有马约拉纳端模式 [12],每个模式都由厄米算符 γ 描述。如果 γ 增加能量 E 则 γ † 增加 − E 而埃尔米特性要求它们是等价的。在平衡状态下唯一的解是 E = 0——对应于经过深入研究的马约拉纳零模式。以频率 Ω 周期性驱动还允许携带 E = Ω = 2 的“弗洛凯马约拉纳模式”,因为此时能量仅对模 Ω 守恒[13]。弗洛凯马约拉纳模式被认为比平衡系统促进了更高效的量子信息处理[14-16]。此外,它们编码了一种时间平移对称性破缺的拓扑味道,因为弗洛凯马约拉纳算子在每个驱动周期改变符号,因此也需要两个周期来恢复其初始形式。我们通过探索将库珀对电子耦合到双周期时间晶体伊辛自旋后产生的周期性驱动的一维拓扑超导体来合并上述现象。这种“时间晶体拓扑超导体”交织了体时间平移
本文研究了比利时高等教育中第一年学生对聊天机器人的使用和感知。随着教育的批量化,现代大学的教育适应变得必要。聊天机器人作为数字工具,为多样化的教育内容提供了一个机会,面临向所有人提供优质教育的挑战。该研究解决了两个研究问题:学生对使用聊天机器人作为课程导师的看法(n = 89)是什么?;根据Bernatchez(2003)的类型,其作用是什么?与其他研究一致的结果表明,在效率,可用性,可接受性和用户经验方面进行了积极的评估,尽管在动机和行为中观察到得分较低。该分析表明,聊天机器人而不是技术性的教学机器人对学生的偏爱。这些结果符合其他研究,强调了聊天机器人在教育中的有效使用,几乎没有不确定的互动。总而言之,该研究强调了聊天机器人作为导师的效率和可接受性,并为其作为个性化学习路径的融合提供了前景。
摘要 - 高增益和量子限制噪声的放大是一个困难的问题。使用具有高动力学电感的超导传输线的参数放大不仅是解决此问题的一种有前途的技术,而且还增加了一些好处。与其他技术相比,它们具有改善功率饱和度,实现较大的分数带宽并以较高频率运行的潜力。在这种类型的放大器中,选择适当的传输线是其设计中的关键元素。鉴于当前的制造局限性,传统的线路(例如Coplanar WaveGuides(CPW))并不理想,因为很难使它们具有适当的特征阻抗,以使其具有良好的匹配和足够慢的相位速度,以使其更加紧凑。电容载荷线,也称为人造线,是解决此问题的良好解决方案。但是,很少提出设计规则或模型来指导其准确的设计。考虑到它们通常是以Floquet线的形式制造的,这一事实更加重要,必须仔细设计以抑制参数过程中出现的不希望的谐波。在本文中,我们首先提出了一种新的建模策略,基于电磁仿真软件的使用,其次是一种促进和加快CPW人造线和由其制成的Floquet线的设计的第一原理模型。然后,我们与实验结果进行了比较,以证明其准确性。最后,理论模型允许人们预测人造线的高频行为,表明它们是实现100 GHz以上参数放大器的良好候选者。
我将使用核自旋链作为示例实验系统,并利用哈密顿工程和核磁共振工具,展示如何设计动态以防止系统升温,即使在自旋之间存在强相互作用的情况下也是如此。在防止热化的策略中,我将重点关注通过无序进行定位,这可以抑制量子信息的混乱,以及弗洛凯工程,它可以诱导预热化,这是一种热化速度仅呈指数级缓慢的长寿命状态。
使用Kretschmann配置进行膜16。Sijmon Verhoef,Wildwood Secondary,第二次世界大战中的无线电波17。查尔斯·华莱士(Charles Wallace),塔姆(Tamu),弱连贯状态定位18。</div>Xingqi Xu,Zhejiang University,室温原子中的Floquet超级晶格19。fan Yang,tamu,蠕虫孔中的耳语画廊模式20。chaofan zhou,tamu,用原子镜21。Wenzhuo Zhang,Tamu和Furman大学的Zia Harrison,Atom对量子的反应
基于定期驱动的量子系统(“ Floquet Engineering”)基于浮标理论的频率高频电磁场来控制电子特性,该理论已在上一十年中彻底彻底实现TUM电路14-17,固态系统18-21和纳米效应22-28。由于无法通过电子吸收效率,因此只能穿衣服,修改所有电子特性。这样的调味料既导致电子中现有术语的重新归一化,也导致了新术语的出现(例如自旋轨道耦合29),这大大改变了带结构和电子传输。,电磁敷料会导致电子相互作用的实质性修改,从而诱导以排斥电位30结合的电子状态,将电子配对的电子配对,其中包含带有不同ef-ef-ef-ef-eff- eff-fifecte的电荷载体和新的相互作用(例如,与新的相互作用)(例如,相互群体和新密度),并构成了whos的范围 - 非羟基分散剂(例如,在最简单的一维单频枢轴模型中)33。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。