近十年来,许多国家都在积极研究超导量子电路的基本量子特性 [1–3]。该领域的进展得益于新型量子比特的出现 [4, 5]、制造方法的改进 [6– 10]、系统尺寸的增加 [2–11] 以及量子比特的相干性 [2, 12]。超导量子比特的主要优势是制造工艺相对简单,采用半导体电子产品生产中广泛使用的标准电子束沉积和纳米光刻方法。超导量子比特的运行基于约瑟夫森效应。[12, 13] 的作者简要介绍了超导量子比特的主要类型,特别是相干时间达到数十和数百微秒的 transmons 和 fluxoniums。
电子邮件:roberto.moretti@mib.infn.it摘要 - Quantum Sensing是一个快速扩展的研究领域,在基本物理实验中找到了其应用之一,例如寻找弱EM耦合的暗物质(DM)候选候选者,NAINELELENEXION和DALK PHOTCON。超导Qubits和制造技术的最新发展对量子传感的推动进展产生了重大贡献,这要归功于它们对AC领域的高灵敏度,并且有可能基于量子非demolition(QND)[1]和直接检测来利用基于量子非demolition(QND)的检测方案。QND包括在量子系统和被困在空腔中的光子之间建立一个纠缠状态,从而使我们能够在不吸收的情况下推断光子的存在,从而实现多个测量值,从而指数抑制了深色计数速率。相反,直接检测方案依赖于共振,低功率,暗物质诱导的交流场,其量子态缓慢地旋转速度状态,该量子态可以在高碳状态的thermons和fluxoniums中衡量。此贡献是INFN QUB-IT协作的一部分,该协作旨在通过量子超导设备来推进微波单光子检测。演示将说明QUB-IT状态以实现数百微秒连贯的时间和工程DM检测设置。这项工作研究了平面transmon量子芯片芯片的建模和设计优化,利用集结振荡器模型(LOM)[3]和能量参与率(EPR)[4] [4]来提取汉密尔顿参数。基于EPR的新型策略是为了增强通过有限元模拟估算两级系统(TLS)损失估算的准确性。还讨论了通过耦合的多Qubit系统提高DM敏感性的可能性,以及在国家标准技术研究所(NIST)制造的单量芯片(NIST)的表征以及模拟和测量的Qubit参数之间的彻底比较,例如弹性频率,Anharmormonity和Anharmormonity和Anharmonicity and coupling Lustertic lofter与读取结构。这项工作中提出的初步结果有望进一步增强量子传感平台的灵敏度和可靠性,这可能会超过当前光DM搜索实验的局限性。