摘要 - 在这项工作中,我们提出了一种破坏性节俭的激光雷达感知数据流,该数据流产生而不是感知环境的一部分,这些部分是基于对环境的广泛培训,或者对整体预测准确性的影响有限的。因此,所提出的方法将传感能量与训练数据进行交易,以获取低功率机器人和自动导航,以便用传感器省将,从而在一次电池充电时延长了其寿命。我们提出的为此目的提出的生成预训练策略称为径向掩盖的自动编码(R-MAE),也可以在典型的激光雷达系统中很容易实施,通过选择性激活和控制在现场操作过程中随机生成的角区域的激光功率。我们的广泛评估表明,使用R-MAE进行预训练可以重点关注数据的径向段,从而比常规程序更有效地限制了空间关系和对象之间的距离。因此,所提出的方法不仅降低了传感能量,而且还提高了预测准确性。例如,我们对Waymo,Nuscenes和Kitti数据集进行了广泛的评估表明,该方法在跨数据集的检测任务的平均精度提高了5%,并且从Waymo和Nuscenes转移到Kitti的检测任务的平均精度提高了4%。在3D对象检测中,它在KITTI数据集中的中等难度水平下,在AP中最多可增强小对象检测。即使使用90%的径向掩蔽,它在Waymo数据集中所有对象类中的MAP/MAPH中都超过了基线模型。此外,我们的方法在Nuscenes数据集上分别获得了MAP和NDS的3.17%和2.31%的提高,这表明了其在单个和融合的LIDAR相机模态方面的有效性。代码可在https://github.com/sinatayebati/radial Mae上公开获取。索引项 - lidar预训练,掩盖自动编码器,超有效的3D传感,边缘自治。
基于音素的方法,例如Jali [Edwards等。2016]过去曾提出过。他们需要音频和对话文本作为输入,以获取音素的时间序列数据以匹配音频。根据音素的时间,它们通过演奏与音素相对应的姿势来表达唇部同步动画。在上一个标题中,我们使用基于音素的方法为简单事件场景创建LIP-Sync动画。我们使用了SPPAS [BIGI 2015]的音素对齐方式,并通过音素融合了口腔姿势来播放唇部同步动画。我们将用于这种混合物的口腔姿势的集合视为一种称为LipMap的资产。图2显示了一些存储在唇布中的姿势。它为每个姿势存储骨转化。但是,当对话文本中没有即兴的声音或呼吸声时,这变得有问题。在这种情况下,音素将无法正确放置,导致错误的姿势与声音不匹配。需要进行手动调整以避免此问题。近年来,基于机器学习的方法,例如Nvidia的Omniverse Audio2Face [Karras等。2017]也已提出。我们的方法属于这些。根本差异之一
氰基有机发色团在光毒素催化中成为理想的养育剂。1 - 3在寻找可用的阴极电势窗口的扩展时,它们被用于所谓的连续光诱导的电子传递机制(Conpet,图,图。1a)。conpet工艺是由per烯比二酰亚胺染料4率先提出的,并进一步扩展到其他有机彩色团,5个,例如Dicyanoanthtaracene,6 Rhodamine 7和Eosin。8大多数情况基于中性光催化剂和相应的自由基阴离子,如图1a,但也有有关阳离子光催化剂的报道,相应的中性自由基形成了第一个光诱导的电子传递过程。9,10最近,蓝氰烯进入了竞技场,用于各种反应,包括活化还原性顽固的芳基氯化物。11 - 20
过继免疫疗法在治疗人类癌症方面取得了广泛成功,这导致了现代医学的范式转变。利用嵌合抗原受体 (CAR) 对自体和同种异体免疫细胞进行改造,使其能够靶向肿瘤细胞上的特定抗原,从而产生了 CAR T 和 CAR NK 细胞疗法,这些疗法越来越常被引入癌症患者的治疗方案中。虽然同种异体 T 细胞可能具有抗肿瘤活性提高等优势,但它们也存在发生移植物抗宿主病等不良反应的风险。这种风险可以通过使用自体免疫细胞来降低,但是,对于某些患者来说,T 细胞和/或 NK 细胞的分离、改造和扩增所需的时间可能太长。因此,迫切需要制定策略来稳健地生产“现成的”CAR T 和 CAR NK 细胞,这些细胞可用作癌症诊断或复发与同种异体移植之间的过渡疗法。基因组修饰技术的进步加速了设计细胞治疗产品的产生,包括开发用于癌症免疫治疗的“现成”CAR-T 细胞。此类方法的可行性和安全性目前正在临床试验中进行测试。本综述将描述 CAR 疗法的细胞来源,提供当前基因组编辑技术的背景以及这些方法在生成通用“现成”CAR-T 和 NK 细胞疗法方面的适用性。
肝脏正弦内皮细胞(LSEC)是高度专业的内皮细胞(EC),在肝发育和再生中起着重要作用。此外,它参与了各种病理过程,包括脂肪变性,炎症,纤维化和肝细胞癌。然而,培养后LSEC的快速去分化极大地限制了其在生物医学应用中的体外建模。在这项研究中,我们开发了一种高效的方案,用于仅在8天内诱导人类诱导的多能干细胞(HIPSC)的LSEC像细胞。使用单细胞转录组分析,我们确定了几种新型LSEC特异性标记,例如EPAS1,LIFR和NID1,以及几种先前揭示的标记物,例如CLEC4M,CLEC1B,CRHBP,CRHBP和FCN3。这些LSEC标记在我们的LSEC样细胞中特异性表达。此外,HIPSC衍生的细胞表达LSEC特异性蛋白,并表现出与LSEC相关的功能,例如乙酰化低密度脂蛋白(AC-LDL)和免疫复杂的内吞作用。总体而言,这项研究证实了我们的新规程允许HIPSC迅速在体外获得LSEC样表型和功能。有效,迅速生成LSEC的能力可能有助于在肝特异性多细胞微环境中更精确地模仿肝发育和疾病进展,从而为新的治疗策略的发展提供新的见解。
摘要:尝试利用生成式人工智能技术生成新型桥梁类型。采用三跨梁桥、拱桥、斜拉桥、悬索桥的对称结构化图像数据集。基于Python编程语言、TensorFlow和Keras深度学习平台框架,以及Wasserstein损失函数和Lipschitz约束,构建并训练生成式对抗网络。从获得的低维桥型潜空间采样,可以生成具有非对称结构的新桥梁类型。生成式对抗网络可以在人类原有桥梁类型的基础上,通过有机地组合不同的结构构件来创建新的桥梁类型。具有一定的人类原创能力。生成式人工智能技术可以开拓想象空间,启发人类。
骨骼发育始于未分化的间充质细胞的凝结,这些细胞为原始中的未来骨骼树立了框架。在内侧软骨途径中,凝结内的间充质细胞分化为SOX9依赖性机制中的软骨细胞和细胞细胞。然而,凝结外的间充质细胞的身份以及它们如何参与开发骨骼的身份仍然没有固定。在这里我们表明,凝结围绕的中囊细胞有助于软骨和peri骨,可稳健地产生骨细胞,成骨细胞和骨髓基质细胞,在发育中的骨骼中。E11.5处PRRX1-CRE标记的肢体间充质细胞的单细胞RNA-seq分析表明,Notch效应子HES1以相互排他性的方式表达,Sox9在前凝结中表达。分析Notch信号传导报告基因CBF1:H2B-Venus表明邻二碳的间充质细胞在缺口信号传导中活跃。使用HES1-creer确定的在E10.5时Sox9 +凝结周围的HES1 +早期间质细胞的在E13.5处有助于软骨和per骨,随后成为生长板软骨细胞的生长板和细胞的细胞,并在E13.5处有助于软骨和cor骨的细胞,并在e13.5处有助于软骨和细胞的细胞,并在e13.5处有助于,并在e13.5上有助于。骨头。 相比之下,HES1 +在E10.5时Sox9 +凝结周围的HES1 +早期间质细胞的在E13.5处有助于软骨和per骨,随后成为生长板软骨细胞的生长板和细胞的细胞,并在E13.5处有助于软骨和cor骨的细胞,并在e13.5处有助于软骨和细胞的细胞,并在e13.5处有助于,并在e13.5上有助于。骨头。 相比之下,HES1 +在E13.5处有助于软骨和per骨,随后成为生长板软骨细胞的生长板和细胞的细胞,并在E13.5处有助于软骨和cor骨的细胞,并在e13.5处有助于软骨和细胞的细胞,并在e13.5处有助于,并在e13.5上有助于。骨头。相比之下,HES1 +
个人简介:David Vitali 于 1988 年毕业于比萨大学物理学专业,并于 1994 年获得比萨高等师范学院物理学博士学位。他曾担任北德克萨斯大学(美国)、巴黎高等师范学院、昆士兰大学、布里斯班(澳大利亚)和维也纳大学的客座讲师。自 2015 年起,他担任卡梅里诺大学理论物理学教授。他在国际同行评审期刊上发表了 193 篇出版物,引用次数超过 10700 次,Hirsch 指数 h = 52(SCOPUS 数据库)。他在量子光学和量子信息理论的许多子领域开展了研究,例如纠缠操控、量子通信和量子密钥分发、量子技术的量子光学实现。 2015 年,他被任命为美国物理学会 APS 会士,表彰他“在腔光力学方面的开创性工作,为量子信息处理和量子受限传感提供了理想而灵活的环境;提出了控制量子系统退相干的开创性技术。” 2021 年,他被提名为 OPTICA 高级会员,并协调了多个欧洲项目和许多国家项目,这些项目均与量子技术和量子光力学有关。
作者摘要(最多 200 字):近年来,人工智能 (AI) 及其应用在医疗保健领域引起了公众的极大兴趣和兴奋。然而,人工智能在医疗保健领域的成功整合和使用将取决于患者和用户的采用。因此,如果用户的担忧没有得到认真解决,并且患者没有接受有关这些技术如何工作的教育,那么人工智能工具在医疗保健领域的应用可能会受到限制。虽然已经有关于临床医生和医疗保健专业人员对人工智能的态度的研究,但人们对公众对医疗保健环境中人工智能的看法知之甚少。我们的研究通过分析 2021 年加拿大数字健康调查的数据来解决文献中的这一空白,以了解加拿大人对人工智能的态度与各种社会经济和人口因素之间的关系。我们的研究结果发现,老年加拿大人、受教育程度较低的加拿大人和女性需要更好地了解人工智能的安全和负责任的使用,并保证良好的数据安全实践,然后他们才能广泛接受它。此外,信任因素可能是导致中年加拿大人对人工智能感到不适程度更高的一个因素。
1 1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。 迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。 这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。 随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。 在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。 引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。 通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。小分子和生长因子的组合被用来指导编辑的细胞逐步分化为运动神经元,以证明可以为下游应用生成相关的疾病细胞。关键字:CRISPR,ISEGONIC IPSC,ALS,SOD1 -I114T,SOD1 -G93A,FUS -H517Q