血脑屏障 (BBB) 是分子和药物的有效屏障。多细胞 3D 球体显示出可重现的 BBB 特征和功能。这里使用的球体由六种脑细胞类型组成:星形胶质细胞、周细胞、内皮细胞、小胶质细胞、少突胶质细胞和神经元。它们形成体外 BBB,调节化合物进入球体的运输。通过共聚焦激光扫描显微镜研究了荧光超小金纳米粒子(核心直径 2 纳米;流体动力学直径 3-4 纳米)在 BBB 中的渗透随时间的变化,以溶解的荧光染料 (FAM-炔烃) 作为对照。纳米粒子很容易进入球体内部,而溶解的染料本身无法穿透 BBB。我们提出了一个模型,该模型基于纳米粒子随时间打开 BBB,然后快速扩散到球体中心。当球体经历缺氧(0.1% O 2 ;24 小时)后,血脑屏障的通透性增强,允许更多的纳米颗粒和溶解的染料分子被吸收。结合我们之前观察到的这种纳米颗粒可以轻松进入细胞甚至细胞核,这些数据证明超小纳米颗粒可以穿过血脑屏障。
Charles W. Haines 博士、Panchapakesan Venkataraman 博士、Mark H. Kempski 博士、Chris Nilsen 博士(他不知不觉地引导我走上了贝塞尔曲线的道路)、George Komorowski 先生和 David Hathaway,均为 RTT 机械工程系的教职员工。
人们每天都会合成新的金属化合物,目的是改善抗癌药物的细胞毒性,从而在癌症治疗中取得更大的成功。1 在所有这些配方中,都会开发出新的配体系统并与金属中心螯合。2 配体在调节复合物细胞毒特性方面的作用非常重要。金属复合物的亲脂性和稳定性在很大程度上取决于配体系统的性质。3 因此,金属基药物结构和配体系统的选择提供了重要的特性,可以控制金属药物候选物的毒性、生物利用度和特异性。4 为此,已经开发了几种配体系统,而二硫代氨基甲酸酯已经成为医学中各种应用的首选配体系统之一,例如碳酸酐酶 (CA) 抑制剂以及细胞代谢中的重要化合物。 5 DTC 化合物及其金属配合物具有调节参与细胞凋亡、转录、氧化应激和降解等生物过程的关键蛋白质的能力。6 据报道,配位二硫代氨基甲酸酯具有潜在的化学保护功能,7 治疗细菌和真菌感染、艾滋病毒和目前的癌症。8 对肿瘤细胞的影响归因于它们与肿瘤细胞中的铜反应形成复合物,从而抑制蛋白酶体并随后启动肿瘤细胞特异性
图 1 载有 5-氟尿嘧啶 (5-FU) 的金纳米粒子 (AuNPs) 与 CD133 抗体结合,在靶向药物递送系统中靶向结直肠癌干细胞 (CRCSCs) 的拟议机制示意图。载有 5-FU 并与 CD133 抗体结合的甲氧基聚乙二醇 (mPEG) 稳定的 AuNPs 将靶向 CRCSCs,而不是大部分结直肠癌,因为 CRCSCs 表面 CD133 抗原过度表达。CD133 抗体配体与靶细胞的高亲和力结合将提高递送效率,从而保护健康细胞。载有 5-FU 的 AuNPs 将通过内吞作用被细胞内化。肿瘤内的酸性环境可能会触发 5-FU 从细胞内体内的 AuNP 复合物中裂解,通过干扰 DNA 合成来增强细胞毒性。
摘要:通过在薄 AuAl 2 膜中发射表面等离子体 (SP),我们确认金属间化合物 AuAl 2 的异常紫色是由等离子体引起的。我们测量了 SP 色散关系,还使用标准 SP 共振传感技术使用这些薄膜测量了蔗糖溶液的折射率。我们发现平面 AuAl 2 中的 SP 能量约为 2.1 eV,比金低约 0.4 eV,并且该材料具有很强的抗氧化性。这与之前报道的 AuAl 2 介电函数测量结果接近。在此基础上,我们预测 AuAl 2 纳米粒子将具有非常强的、光谱几乎均匀的光吸收率,比标准炭黑高出大约一个数量级。因此,此类粒子可能在光热疗法或太阳能蒸汽生成或等离子体催化等领域中用作遮蔽剂或替代更复杂的吸光金结构。
Sadiq Khattak 博士非常荣幸能够成功获得美国亚特兰大佐治亚理工学院 (GIT) 和法国洛林大学 (UOL) 的纳米技术和材料能量与力学双博士学位。在此之前,他于 2009 年在美国亚特兰大佐治亚理工学院获得机械工程硕士学位,并于 2008 年在法国洛林大学获得材料力学硕士学位。他曾获得 GIT 的最佳博士生奖。他在欧洲和美国的不同研究实验室和机构拥有丰富的教学经验。他在攻读博士学位期间也取得了一些突破性的研究成果,包括首次在焊点中识别出 Sn-Ag-Cu 合金中的元素镧。他的作品发表在欧洲和美国的高影响因子期刊和国际会议上。他参加了全球 15 多个国际研讨会。
改变气候条件可能会显着影响本地生态系统,并要求空军调整自然资源管理策略,以支持军事任务要求并满足敏感物种的需求。INRMP的目标和生态系统管理和生物多样性保护的目标必须考虑预测的气候变化影响,并有利于基于自适应生态系统的管理方法,该方法将提高生态系统以适应气候变化的弹性。INRMP将使用特定区域特定的气候科学,气候预测和现有工具来评估气候变化风险,脆弱性和适应策略。INRMP应列出或通过参考,特定于安装的气候数据和特定地区的气候预测,并从最新的四年一年中国家气候评估报告中列出,并在适当的情况下包括其他相关的联邦气候科学文档。
热超声键合过程中,金球和铝合金金属化层之间的焊接是通过界面处金和铝的固态混合以及金铝金属间相的形成而发生的。由该金属间相组成的总键合面积的比例通常称为金属间覆盖率,缩写为 IMC。超声波对于通过摩擦形成 IMC 至关重要 [1-3],但在整个界面上并不均匀,开始时是离散的岛状物,在超声波的作用下生长,最终将球锚定在铝金属化层上。如果优化了键合参数,大部分界面面积(多达 70-80%)应由 IMC 组成。在拉力测试期间,金-铝界面保持机械强度所需的最小 IMC 量只需略大于导线的横截面积。但是,如果界面大面积未键合,空气、空气中的污染物和环氧模塑料就会渗入球底,从而导致后续组装步骤中发生氧化和腐蚀反应。因此,最大化 IMC 是优化球键合工艺的重要部分。IMC 的测量通常是通过使用不会侵蚀金属间化合物或金的 KOH 溶液溶解 Al 键合垫 [4] 并观察球底面来完成的。确定形成坚固球键合所需的 IMC 的精确量并不是一门精确的科学,但经验准则是,真正键合球面积的 70% 应由 Au-Al 金属间化合物组成。有两种常用方法可用于查看和记录金球底面图像中的金属间化合物覆盖率,以便随后使用图像分析软件进行测量。第一种是使用光学显微镜 (LM),第二种是使用扫描电子显微镜 (SEM)。SEM 要求将样品镀金,并放置在 SEM 腔中,然后抽真空并进行检查,而 LM 不需要特殊且耗时的样品制备,被认为比 SEM 更快、更容易。但是,每种方法都有其优点,并且需要了解某些因素,尤其是 LM,才能正确测量 IMC。光学显微镜可以使用不同的照明模式,与 SEM 不同,在显微镜和照明下对样品进行对准可能会使 IMC 的识别和测量变得复杂,并且很容易导致错误的测量。但是,虽然覆盖率的光学评估更快,但也更难以解释。在半导体封装的组装工程鉴定中,由于耗时较少,因此似乎更倾向于采用光学评估金属间覆盖率。在新封装鉴定的组装工程阶段,可能需要通过 SEM 测量 IMC 来获得详细信息。但是,在大规模生产过程中,光学测量可能更合适,因为它们耗时较少。本文的目的是提供
一般描述具有所选腐蚀抑制剂的非铬酸盐液体,专门设计用于抑制和防止水系统和锅炉的腐蚀。产品是专门配制的,易于使用颜色指示器来检查锅炉中产品的工作强度。使用NCT 105L用作水系统中所有亚铁和有色金属的腐蚀抑制剂。NCT 105L与所有冷却剂兼容,并且在海水泄漏到淡水中时,也有助于抑制规模制剂。剂量冷却系统应在施用前没有生锈和规模。初始剂量为24 ltr/吨的冷却水和pH值应从8.3-9.5保持。所有剂量应根据以下图表基于亚硝酸钠分析。液体非铬酸盐D.E.W.T.剂量图测试结果为ppm nano 2
使用概率空间数据分析与集成,开发了布比绿岩带太古代矿脉金矿潜力预测模型。所用数据集包括金矿床记录、地质图、构造图、航磁和 ASTER 图像。从地理勘探数据集中提取了指示太古代矿脉金矿潜力的地质特征,用作基于太古代矿脉金矿概念模型的预测模型的输入。指示性地质特征包括岩性单元、与花岗岩-绿岩接触的接近度、剪切和变形区、叶理和 s 结构、褶皱轴、热液蚀变带和航磁线纹(矿化流体的通道)。使用 Crosta 技术从 ASTER 数据中提取了与金矿化相关的热液蚀变带。同晚期构造花岗岩侵入体提供了热量和/或热液,导致金矿化,而其余结构则作为金矿的沉积地点。已知的金矿床与地质特征具有空间关联。对金矿床与不同地质特征之间的空间关联进行了定量分析。研究区共有 201 个金矿床。147 个小型矿床用于预测建模,而 51 个大型矿床用于模型验证。输入地图是