摘要 保护部件免受磨损和腐蚀是延长其使用寿命的常用方法。这可以通过在部件上涂覆硬面材料来实现。常见的涂层由碳化钨或钴铬合金(也称为司太立合金)等材料组成。硬面材料可以通过等离子焊接或激光熔覆等焊接方法沉积。基材到硬面层的离散变化会导致裂纹和碎裂。研究表明,当使用功能梯度材料在基材和硬面之间建立平滑过渡时,开裂风险会降低。文献中已经知道从奥氏体钢到钴铬合金的等级。然而,没有关于奥氏体-铁素体双相钢作为基材的知识。因此,本研究旨在证明采用新方法从双相钢到钴铬合金的功能梯度材料的可行性。通过使用基于粉末的定向能量沉积,可以增材制造具有平滑材料过渡的梯度材料。通过金相学检查开裂和孔隙率。使用显微硬度测量以及能量色散X射线光谱和X射线荧光分析化学成分来验证构建策略。
摘要:定向能量沉积 (DED) 是金属增材制造 (AM) 中的关键工艺,具有创建功能梯度材料 (FGM) 的独特能力。FGM 凭借其性能优化、减少材料缺陷和解决连接问题等优势,在高价值行业中引起了极大关注。然而,后处理仍然是一个关键步骤,这表明需要进一步研究以了解 FGM 的可加工性。本文重点分析了基于不锈钢 316L (SAE 316L) 和 Inconel 718 的 FGM 的制造和加工特性。FGM 的制造从 100 wt.% 的 SAE 316L 开始,通过逐步增加 20 wt.% 的 Inconel 718 并同时减少 SAE 316L 来调整成分比。在 FGM 制造完成后,通过硬度测试、光学微观结构测量、能量色散光谱 (EDS) 和 X 射线衍射 (XRD) 全面分析了微观结构和机械性能。为了研究后处理方面,使用两种不同的铣削方法(向上和向下铣削)和加工路径(从 SAE 316L 向 Inconel 718,反之亦然)进行了端铣削实验。平均切削力在向上铣削时达到峰值 148.4 N,在向下铣削时降至 70.5 N,刀具磨损测量进一步提供了在使用 SAE 316L 和 Inconel 718 的 FGM 时最佳铣削方向的见解。
功能分级的材料(FGM)已获得了各种应用的许多兴趣,旨在符合当地特性(例如腐蚀行为)的特殊要求,这高度决定了该组件的寿命。腐蚀行为在很大程度上取决于设计材料的化学成分和微观结构。因此,使用线性弧添加剂制造(WAAM)设计了两种FGM组合,其线性变化的材料沉积从G 3SI1到G 19 9L SI(组合1)和G 18L NB到G 19 9L SI(组合2)。使用光学显微镜(OLM)分析不同位置的微观结构,具有连接能量分散X射线光谱(SEM/EDS)和X射线衍射(XRD)的扫描电子显微镜(扫描电子显微镜)。由0.6 M NaCl溶液中的电化学腐蚀行为通过环状电力动力学极化(CPDP)确定,包括CPDP后的SEM成像,以确定凹坑的大小和形态。有关化学梯度的铁素体(α和δ),马氏体和奥氏体类型的相形序列。由于Cr和/或Ni的增加,两种组合方向上的两种组合都增强了点腐蚀性,而PIT形态在各种微观结构的存在依赖性方面发生了变化。
具有周期性微观结构的构建的细胞材料(ACM)通常是在通过增材制造(AM)技术获得的高性能组件中构建的,这是由于其高特定强度和良好的效果。ACM也用于用于较高的表面与质量比以方便利用以增强传热的方法。在这项工作中,提出了一种数值方法,以预测AM获得的ACM的有效疗法电导率(ETC)。该模型基于一般数值均质化方案和对ACM的代表体积元素(RVE)的明确描述。数值分析已经对31 rves的几何形状进行:结果表明,ACM的宏观等在很大程度上取决于RVE的相对密度和几何特征。此外,从rves几何形状的数据库开始,选择了七个配置来设计分级ACM,通过计算机辅助设计与设计兼容的拓扑优化方法基于非均匀理性基础样条型样条超曲面以代表伪型密度纤维,并具有众所周知的固体同位素性材料,并具有损失的方法。尤其是,SIMP方法中使用的惩罚定律被基于物理的惩罚方案取代,该方案通过插值每个RVE拓扑的均质化结果和合适的后加工阶段,以从优化过程的结果中恢复分级ACM而不是结构的分布。在从文献中提取的2D和3D基准问题上显示了所提出方法的效果。
大多数反应器中不同的金属焊缝是低合金钢零件和不锈钢管道之间的连接。造成不同金属焊接接头材料特性差异引起的残余应力造成的原发性水应力腐蚀破裂(PWSCC)损害很高。在世界范围内报告了许多事故,例如由于PWSCC引起的放射性冷却液泄漏,对核安全构成了巨大威胁。这项研究的目的是通过使用由金属3D印刷制造的功能分级材料(FGM)代替现有的不同金属零件来从根本上清除不同的金属焊缝的技术,该焊接由低合金钢和高质量不锈钢制成。进行了粉末的产生,混合比计算和金属3D打印,以制造低合金钢钢钢FGM,以及对FGM的热膨胀(CTE)测量的微结构分析,机械性能和系数。结果,观察到,随着FGM中的奥氏体含量的增加,CTE倾向于增加。FGM中热膨胀系数的逐渐变化表明,使用3D打印的添加剂制造可有效防止其整个层的热膨胀性能突然变化。关键字:功能分级材料(FGM); PWSCC; 3D打印;反应堆;热膨胀系数(CTE)
本文提出了一个有效的一致核模型,以分析基于一致的夫妇应力理论(CCST)和非经典限定元素方法的功能分级纳米复合材料(FG-NC)Mindlin板的行为。基于Halpin – Tsai模型提出了一种新颖的统一形式,以限制小规模的异质性,可以同时考虑基质和增强阶段的分级效应以及通过平板厚度的分布分布。为了满足夫妻应力理论的C 1连续性要求,通过使用Hermitian方法并以亚参数方式采用了四节点的矩形元素。该元素在每个节点上具有20度的自由度(DOF),在弯曲模式下将其降低至12 DOF,而不会伸展变形。FG-NC板的弯曲,自由振动和屈曲行为。氧化石墨烯(GO),氧化石墨烯(RGO)还原和银还原的石墨烯氧化石墨烯(AG-RGO)被考虑在分散相。尺寸依赖性最佳值,从而最大程度地减少其质量的频率约束。检查了各种参数的效果,例如分级指数,重量分数,分散模式,填充剂方面/厚度比和长度尺度参数,并提供了基准示例。
本研究采用材料挤出 (MEX) 技术,特别是多材料单挤出系统,通过混合 PLA 和 TPU 材料来制造功能梯度材料 (FGM)。该过程引入了旨在增强材料界面的梯度过渡。在拉伸和疲劳载荷条件下,对一系列浓度模式(按体积计从 20% 到 80% 的 FGM)进行系统评估。在制造过程中,对实验参数进行细致的控制,包括应力水平、应力比和频率。表征过程需要对 FGM 界面进行比较分析。结果显示,无论材料浓度如何梯度变化,界面强度都有显著增强。这种增强在从较软到较硬的材料成分过渡期间尤为明显。本研究的主要目标有两个:阐明材料在拉伸-拉伸载荷情况下的行为,并全面了解 FGM 界面的复杂性。
摘要。功能梯度材料 (FGM) 是材料科学和工程领域的一项了不起的发明,它具有独特的性能,可用于各种应用。由于能够逐渐改变材料的成分、微观结构或机械性能等特性,FGM 具有无与伦比的适应性,使其适用于各种高强度应用。制造 FGM 的新方法之一是对粉末材料使用严重塑性变形 (SPD) 技术。粉末的 SPD 涉及几个关键步骤;该过程从选择具有不同成分和相的材料开始,然后混合粉末、冷压、SPD 方法,以及(如果需要)热处理。该过程通过表征和测试完成,以评估最终形成的 FGM 的微观结构和特性。FGM 将继续改变材料工程并推动其在许多工程领域和行业中的应用界限,因为它们表现出提高效率、耐用性和性能等有吸引力的能力。因此,本文探讨了通过 SPD 制造 FGM 的过程,并强调了其在 FGM 生产中的重要性和未来趋势。
熔化潜热,ΔHJ kg -1 2.62x10 5 2.58x10 5 2.51x10 5 2.56x10 5 2.57x10 5 2.56x10 5 2.59x10 5 液体粘度,μ kg m -1 s -1 6.67x10 -3 6.81x10 -3 6.89x10 -3 6.97x10 -3 7.03x10 -3 7.09x10 -3 7.21x10 -3 热膨胀系数,αK -1 1.78x10 -6 1.78x10 -6 1.96x10 -6 2.16x10 -6 2.31x10 -6 2.26x10 -6 2.22x10 -6 1064nm波长的吸收系数,η - 0.351 0.344 0.337 0.329 0.322 0.315 0.308
摘要:本文利用ATLAS TCAD器件模拟器从模拟、RF性能的角度探讨了环绕栅极无结渐变通道 (SJLGC) MOSFET 的潜在优势。系统地研究了横向渐变通道对电位、电场、载流子速度、通道能带的影响。本研究主要强调了 SJLGC MOSFET 的优越性能,表现出更高的漏极电流 (ID )、跨导 (gm )、截止频率 (f T )、最大振荡频率 (f max )、临界频率 (f K )。由于通道渐变的影响,SJLGC MOSFET 的漏极电流提高了 10.03%。SJLGC MOSFET 的 f T、f max 和 f K 分别提高了 45%、29% 和 18%,表现出更好的 RF 性能。 SJLGC MOSFET 相对于 SJL MOSFET 的优势进一步得到阐明,其固有电压增益 (gm / g ds ) 提高了 74%,表明其在亚阈值区域具有更好的应用。但在亚阈值区域,SJLGC MOSFET 的跨导产生因子小于 SJL MOSFET。由于较低的栅极间电容 (C GG ) 的影响,SJLGC MOSFET 的固有栅极延迟 (ζ D ) 与 SJL MOSFET 相比较小,表明其数字开关应用更好。模拟结果表明,SJLGC MOSFET 可以成为下一代 RF 电路的有力竞争者,该电路涵盖了 RF 频谱中的广泛工作频率。