摘要:光谱计算机断层扫描标志着医学成像的革命性进步,提供了组织表征和诊断准确性的显着改善。使用双能X射线技术,该方法根据其原子数和电子密度区分材料。频谱成像可从多个能级中获取数据,从而更详细地描绘组织结构,并增强对各种病理状况的识别和理解。与传统成像不同的是依赖于单个能级的传统成像,该方法产生的图像具有多样的对比度,从而可以区分标准扫描中可能看起来相似的组织。本评论探讨了有关光谱计算机断层扫描的发表研究和研究的各种集合,利用了同行评审的期刊和学术教科书,专门研究双能量成像系统,探测器创新和临床应用。获得了所获得的见解,以提供有关此成像技术的基本原理,技术进步和临床实用性的全面概述。强大的搜索策略和明确定义的纳入标准可确保选择高质量的相关资源,以支持本综述中得出的结论。本文旨在对光谱计算机断层扫描的基本原理,技术创新和临床应用进行全面概述。这种能力对于检测和分析各种病理问题(包括肿瘤,血管异常和退化性疾病)特别有价值。2。检测器技术的最新进步显着提高了光谱成像系统的灵敏度和分辨率。这些改进会导致更清晰,更精确的图像,并减少噪声。高级图像重建算法的结合具有进一步的图像质量,从而更好地可视化复杂的解剖学特征,对于准确的诊断和有效的治疗计划至关重要。此外,增强的软件功能现在可以详细介绍组织特性的定量分析,例如衰减系数,有助于评估组织组成并区分良性和恶性生长。光谱计算机断层扫描中的进步代表了医学成像中的关键演变,从而显着提高了诊断评估的准确性和细节。利用双能系统和创新技术,可以实现先进的组织表征,促进知情的临床决策。其广泛的临床应用突出了其在各种专业中的重要性,从而提高了有效诊断和管理各种疾病的能力。随着研究和技术的继续发展,它将在实现更好的健康成果中发挥越来越重要的作用。关键字:计算机断层扫描,光谱成像,组织表征,双能X射线系统1。引言自从五十年前作为一种非侵入性诊断方法首次亮相以来,计算机断层扫描(CT)经历了重大发展。现代CT研究的关键领域是光谱成像,它利用多色X射线的能量信息来增强组织表征。虽然Spectral CT源于早期CT技术,但由于技术的改进,其临床采用率在过去的十年中已大大增长,这使其实际上更可行(Krauss,B。,2015年)。ct数是由X射线的衰减确定的,X射线受材料的质量密度和有效原子数的影响。光谱CT使用数学技术分别计算质量密度和有效原子数,从而收集多个能级的数据。双能计算机断层扫描(DECT)的出现具有显着高级的CT技术,可以解决组织表征的先前局限性,而新的光子计数检测系统为多能成像的进一步改善提供了潜力(Gutjahr,R。,R。,2016年)。本文的目的是对光谱计算机断层扫描的核心原理,技术进步和临床应用进行深入探索。方法本综述研究了一系列关于光谱计算机断层扫描的已发表的研究和研究,这些研究来自同行评审的期刊和学术教科书,这些期刊和学术教科书着眼于双能CT系统,探测器技术,
这个简单的类比是数学和计算机科学中关键概念的基础,称为密码学。请注意,每当包含消息时,公文包总是如何以某种方式锁定其整个旅程。消息不断地从人发送到人,服务器到服务器,并且保护信息免受拦截至关重要。那么我们该怎么做?密码学的基础依赖于发件人争先恐后的消息,而接收器则解散了它,因此双方都理解消息,但是之间没有人能理解它。这个概念并不新鲜。实际上,最早的已知算法之一称为Caesar Cipher(以Julius Caesar的名字命名),来自古罗马。它工作如下:以发送消息,并将每个字母移动到左侧的恒定次数。例如,如果这个数字为5,则“ Hello”一词变为“ Dahhk”。很快就意识到这不是很实际。例如,如果黑客猜测密钥,则解码整个消息非常简单。这是问题。如何创建一种非常安全的算法,但是需要很少的时间来执行并且易于存储?
ProFound AI 可一次性购买,多年期许可证或本地订阅模式。一次性购买包括永久许可证和硬件服务器、安装和用户培训,费用在 25,000 英镑至 45,000 英镑之间。可单独购买其他许可证,费用在 15,000 英镑至 25,000 英镑之间,具体取决于许可证类型。许可证类型为仅 FFDM、仅 DBT 或 FFDM 和 DBT 的组合。保修后支持和软件更新通常占购买价格的 12% 至 15%。订阅定价基于所进行的研究量和类型(2D FFDM 或 3D DBT)。这包括安装、培训、持续支持和未来升级。硬件服务器单独出售。每次考试的典型价格为 1 至 3 英镑。
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
摘要...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。
我是一名科学家。我帮助开创了量子计算和现代开放科学运动。我对人工智能也有浓厚的兴趣。所有这些都是我对帮助人们发现和创造的系统和工具的更广泛兴趣的一部分,无论是个人还是集体。我对量子计算的兴趣始于 1992 年。我在这个领域最为人所知的身份可能是与 Ike Chuang (麻省理工学院) 合著的《量子计算标准文本》。这是过去 30 年物理学中被引用次数最多的著作,也是物理学史上被引用次数最多的十部著作之一(基于截至 2015 年左右的 Google Scholar 数据)。我对量子计算方面的三项研究贡献特别感到自豪:(1) 控制纠缠量子态操纵的基本定理;这引发了人们对主要化数学及其与量子力学的关系的广泛兴趣;(2) 将量子计算重新表述为一种在非常高维弯曲空间中的测地线运动;这项工作目前正在接受量子引力研究人员的深入研究,他们利用它来理解黑洞; (3) 发现和早期开发量子计算的光簇状态方法,目前由 PsiQuantum 公司研究(最新一轮融资额约为 2.3 亿美元)。其他贡献包括参与开发量子门隐形传态、量子过程层析成像(用于实验性地表征量子门)以及最早的量子隐形传态实验之一,该实验被《科学》杂志评为 1998 年度十大突破之一。作为这项工作的一部分,我与他人共同创立并指导了量子信息科学计划,担任昆士兰大学量子信息科学基础教授。当时,它是南半球最大的以理论为重点的量子计算小组,也是世界上最大的量子计算小组之一,成员人数不断增加,目前大约有 30 人(教师、博士后、学生)。更广泛地说,通过招聘、指导和会议,我帮助澳大利亚发展成为世界领先的量子计算国家之一。虽然量子计算通常被认为是一种有前途的技术,但这并不是激发我兴趣的原因。我对计算机很着迷,因为它是一种表示和运用知识的手段,可以执行我们称之为人类认知的过程。量子计算机强烈地挑战我们去理解这些过程的根本限制。从历史上看,另一条研究路线也探讨了同样的问题,尽管角度截然不同。在 20 世纪 60 年代和 70 年代,道格拉斯·恩格尔巴特 (Douglas Engelbart)、伊万·萨瑟兰 (Ivan Sutherland) 和艾伦·凯 (Alan Kay) 等早期的计算研究人员开始将计算机设想为增强人类认知的工具。他们开发了许多最强大的想法,这些想法构成了现代用户界面的基础,这些工具扩展了人类的创造力和发现能力。受这些想法的启发,在 20 世纪 90 年代,我对互联网的承诺感到兴奋,它有助于改变科学研究的方式——通过新的工具进行协作,共享数据、代码和想法,以新的方式创造意义。我看到这个承诺在开源编程社区内迅速实现。但很明显,许多障碍阻碍了科学界的这一目标。科学已经开发了一些强大的知识共享系统和规范(例如期刊文章),但也有许多系统在关键方面(例如数据、软件和工具,以及在发现中往往至关重要的隐性知识)对共享的激励作用较弱或完全不鼓励共享。