结果:土壤有机碳(SOC)的增加程度增加,而在所有综合恢复措施下,可用的营养素均降低。单独播种,与受精,SOC大大增加,草地植被状况的改善和增强的草地生产率。在将牲畜从牧场中转移出来45天的综合恢复度量下,谷氨科的地上生物量和地上生物量增加了(T4)。冗余分析表明,草地植被特征,SOC和可用钾之间存在很强的相关性。考虑到土壤和植被因素,短期结果表明,T4HAD的组合措施对草地恢复是最明显的积极影响。
气候变化以温度和降雨的长期趋势为特征,近年来已经成为一个突出的关注(Seddon等,2016),对森林和草原生态系统的全球碳,水和能量周期产生了重大影响。此外,极端天气事件的频率增加可能会对各种陆地生态系统产生毁灭性后果(IPCC,2023年)。为了进一步研究气候变化对森林和草原生态系统的影响,并支持中国达到其达到其峰值二氧化碳排放和碳中立目标的努力,提出了这一研究主题。该研究主题包括23篇原始研究文章和1篇意见文章,介绍了以下领域的最新进展:(1)森林和草地生态系统响应气候变化的碳,水以及能量循环,以及(2)植被特征和生态系统稳定性的响应和适应性。
随着全球气候变化和人类活动对陆地生态系统的日益增长,了解高山草原生态系统及其影响因素的质量对于有效的生态系统管理和改善人类福祉是至关重要的。但是,基于多标准评估的高山草原的当前自适应管理计划有限。这项研究利用了77个采样点,无人机遥感和卫星遥感数据的领域研究,根据植被和土壤指示器构建高山草原质量指数,并评估生态系统的弹性和压力。评估表明,藏族高原的高山草原被分为五个区域,表明质量和压力水平的显着差异。关键发现表明,高质量的压力区占高山草甸面积的41.88%,占高山草原的31.89%,而质量改善限制区则占相应区域的21.14%和35.8%。该研究建议基于质量水平的高山草原的分级保护和恢复策略:优先考虑高质量的草原,对中等优质草原的动态监测和增强,并应用人工干预措施以及适合低品质草原的物种。这项研究强调了基于分区的自适应策略对可持续生态系统管理的重要性,并为在藏族高原的有效管理和保护高山草原提供了宝贵的见解。
增加的干旱威胁着土壤微生物群落及其在农业土壤中控制的多种功能。这些土壤通常被矿物营养物质受精,但尚不清楚这种施肥如何改变土壤多功能性(SMF)的能力,以维持干旱,以及植物土质相互作用如何影响这些效果。在这项研究中,我们使用山草原土壤来测试矿物营养素(氮和磷)添加的互动效应,并在中间有和没有植物(Lolium Perenne)的SMF上进行了干旱,并在中含有植物中(Lolium Perenne)。我们根据与土壤微生物在其生物量中储存碳(C),氮(N)和磷(P)的能力相关的8个微生物特性计算了SMF,并通过有机物解聚,矿化,硝化,硝化物和否定性加工来处理这些元素。为了研究SMF响应的基础机制,我们表征了使用16S和18S rRNA扩增子测序的土壤化学计量和微生物群落组成的提示变化。我们的结果表明,在植物存在时,受精会降低SMF干旱的耐药性,但在未种植的山地草原土壤中观察到了相反的情况。我们的分析表明,这是由于植物的相互作用,受精和干旱造成了与高SMF相关的四种耦合特性:高土壤水分,低蛋白质C限制,高细菌多样性和低细菌革兰氏革兰氏阳性阳性:革兰氏阳性:革兰氏负比例。总的来说,我们的结果表明,减少矿物肥料在山地草原中的植物生产可以提高土壤在干旱期间保持其多功能性的能力。最后,我们的研究清楚地证明了植物在SMF对全球变化的复杂反应中的重要性,并表明结合化学计量和微生物多样性评估是一种强大的方法,可以解散基本机制。
图1。土壤对干旱和受精的多功能反应,有或没有植物。星星表示干旱和正常气候治疗之间的显着差异。np =无植物,p =植物存在,f =受精,nf =无施肥。灰色=未植入的土壤,绿色=种植土壤,浅色=未施用的土壤,深色=受精的土壤。
C3 194.0 415.7 ± 17.6 352.4 ± 14.2 ± 0.4 14.5 ± 3.8 C4 789.3 735.8 ± 41.6 317.0 ± 16.5 ± 0.4 11 840.4 972.3 ± 39.2 969.4 ± 36.1 3.6 ± 0.6 28.4 ± 4.1 C7 574.3 1104.1 ± 44.3 334.4±13.2 19.4±C9 188.4 228.8±9.9 104.0±4.4 32.5±3.4 35.4 35.4±4.5 C10 1782.5 5019.3±244.6 1636.6 1636.6±81.5±81.5±0.5±0.5±0.5 76±9.9.9.9.9 0.8 C12 505.4 C12 505.4 69.7.7.7.7±694.7±694.7±694.7±694.7±69.7±69.4±69.7±69.7±69.7±69.7±69.7±69.7±69.4±69.7±69.4±69.4应该±0.4 7.7±1.1 C13 4155.5 1612.4±84.5 449.2±23.6.6.6±1.0 C14 2080.2 1732 12.5±1.9 315C3 194.0 415.7 ± 17.6 352.4 ± 14.2 ± 0.4 14.5 ± 3.8 C4 789.3 735.8 ± 41.6 317.0 ± 16.5 ± 0.4 11 840.4 972.3 ± 39.2 969.4 ± 36.1 3.6 ± 0.6 28.4 ± 4.1 C7 574.3 1104.1 ± 44.3 334.4±13.2 19.4±C9 188.4 228.8±9.9 104.0±4.4 32.5±3.4 35.4 35.4±4.5 C10 1782.5 5019.3±244.6 1636.6 1636.6±81.5±81.5±0.5±0.5±0.5 76±9.9.9.9.9 0.8 C12 505.4 C12 505.4 69.7.7.7.7±694.7±694.7±694.7±694.7±69.7±69.4±69.7±69.7±69.7±69.7±69.7±69.7±69.4±69.7±69.4±69.4应该±0.4 7.7±1.1 C13 4155.5 1612.4±84.5 449.2±23.6.6.6±1.0 C14 2080.2 1732 12.5±1.9 315
缩写39 B燃烧40 BD土壤散装密度41 C碳42 c/n碳与氮的比率43 CHG控制高放牧44 clg控制低擦伤45 CV的45 CV系数{ 51 LONG Longitude (°) 52 M Mowing with residues retained 53 MAP Mean annual precipitation (mm year -1 ) 54 MAT Mean annual air temperature (°C year -1 ) 55 Max Maximum 56 Min Minimum 57 PC Principal Component 58 PCA Principal Component Analyses 59 Quart Quartile 60 SEM Standard error of mean 61 SOC C Change in soil organic carbon content (%) 62 SOC S Soil organic carbon stocks (kg C平方米)63儿子土壤有机氮含量(%)64 z高度(MASL)65 ∆ SOC C C c土壤有机碳含量的变化(%)66 ∆ SOC C> 0具有积极变化土壤有机碳含量(%)的研究数量67 ∆儿子在土壤有机硝基含量中的变化(%)n N硝基含量(%)68 ∆ bd in n n ∆ bd Menter in n ∆ bd Menter n n ∆ n ∆ n ∆ crantigon(%)69999999999。比率(%)70 71
a CSIC,全球生态单位 CREAF-CSIC-UAB,08913,贝拉特拉,加泰罗尼亚,西班牙 b CREAF,08913,Cerdanyola del Vall ` es,加泰罗尼亚,西班牙 c 捷克科学院全球变化研究所,Belidla 986/4a,CZ-60300,布尔诺,捷克共和国 d 巴塞罗那自治大学,08193,贝拉特拉,西班牙 e 进化与多样性与生物学实验室(UMR5174 EDB),图卢兹 3 保罗萨巴蒂尔大学,CNRS,IRD,118 route de Narbonne,图卢兹,法国 f 安特卫普大学生物系,Universiteitsplein 1,B-2610,Wilrijk,比利时 g 维也纳大学微生物学和环境系统科学中心,Djarssiplatz 1, 1030,维也纳,奥地利 h 冰岛农业大学,112 Keldnaholt,雷克雅未克,冰岛 i 巴塞罗那大学进化生物学、生态学和环境科学系,08028,巴塞罗那,西班牙
1 伦敦玛丽女王大学生物与行为科学学院,英国伦敦,2 性状多样性与功能系,皇家植物园,英国萨里郡里士满丘,3 加拿大安大略省多伦多市多伦多斯卡伯勒大学物理与环境科学系,4 美国爱荷华州艾姆斯市爱荷华州立大学生态、进化与生物生物学系,5 美国明尼苏达州圣保罗市明尼苏达大学生态、进化与行为系,6 美国密歇根州东兰辛市密歇根州立大学植物生物学系和生态、进化与行为项目,7 爱尔兰都柏林都柏林圣三一大学自然科学学院、动物学系,8 加拿大安大略省多伦多市多伦多斯卡伯勒大学生物科学系,9 美国科罗拉多州博尔德市科罗拉多大学生态与进化生物学系,10 生态研究所和进化,耶拿弗里德里希席勒大学,耶拿,德国,11 德国哈勒-耶拿-莱比锡综合生物多样性研究中心 (iDiv),莱比锡,德国,12 莱比锡大学生物研究所,莱比锡,德国,13 伦敦帝国理工学院生命科学系,西尔伍德公园,阿斯科特,英国,14 吕讷堡吕讷堡大学生态研究所,吕讷堡,德国,15 乌得勒支大学生物系,乌得勒支,荷兰,16 拜罗伊特生态与环境研究中心干扰生态学系,拜罗伊特大学,拜罗伊特,德国,17 麦克丹尼尔学院生物系,威斯敏斯特,马里兰州,美国,18 肯塔基大学植物与土壤科学系,列克星敦,肯塔基州,美国,19 索邦大学法国巴黎大学、法国国家科学研究院、法国农业研究理事会、法国国家农业科学研究院、法国农业科学研究院、巴黎大学城、法国巴黎高等师范学院、法国巴黎索邦大学生态与环境科学研究所、德国莱比锡亥姆霍兹环境研究中心(UFZ)生理多样性系、英国兰卡斯特大学兰卡斯特环境中心、美国明尼苏达州穆尔黑德明尼苏达州立大学生物科学系、美国密歇根州霍顿密歇根理工大学生物科学系
物种在自然界中的作用和相互作用会影响生态系统功能(例如碳和营养循环),从而产生了人类依赖的服务(例如碳固存,水纯化)(图1)。生物多样性与生态系统功能之间的联系数十年来一直具有魅力的生态学家,而草原提供了重要的研究系统(例如[1])。虽然早期研究集中在单个生态系统功能上,但生态系统同时提供的多种功能和服务的认识却导致询问朝着对生态系统多功能性的更综合评估(EMF,[2])的转变。这种变化与对人类驱动的全球生物多样性下降的了解的越来越多,这激发了新一代的生态研究。这些寻求了解多营养社区在提供EMF方面的互补性和冗余,尤其是在生态系统变化的关键驱动因素的背景下,例如增加CO 2 [3],变暖[4]和干旱[5]。本质上,这些研究问:“在人们开始感受到它之前,自然可以忍受多少生物多样性损失?”除经验研究外,观察性研究还产生了基本见解。例如,Jing及其同事[6]表明,气候的区域尺度变化改变了生物多样性对EMF的影响,土壤水分是这种变化的关键驱动力。在这个问题中,Martins及其同事[7]进一步促进了我们对水分压力如何改变生物多样性对EMF的相对贡献的理解。他们发现高相关他们将研究放在草原干旱化的背景下,这种渐进干燥影响了全球40%以上的土地。降雨不足和气候变暖会导致干旱(即长时间的土壤水分赤字),加剧不适当的土地利用并驱动草地的生物多样性损失。但是,我们仍然几乎不知道这些在全球范围内如何改变草地EMF。他们通过在令人印象深刻的101个全球分布的草原和大规模干旱中菌研究中测量EMF来解决这个问题。在全球调查中,他们阐明了植物和土壤微生物多样性在支持101个草原EMF方面的共同和独特贡献。