ningthoujam babulu和n surbala devi摘要进行了锅实验,以检查单个超级磷酸盐(SSP),岩石磷酸盐(RP)和磷溶解细菌(PSB)对磷及其在酸土中摄取的磷的影响。与未经处理的控制相比,所有磷处理土壤的实例均表现出更高水平的可用磷及其在作物生长的不同阶段的吸收。与未经处理的对照进行比较,所有经过磷处理的土壤的可用P及其在作物生长的不同阶段的吸收明显更高。在用50%SSP + 50%RP + PSB处理的土壤中观察到可用的P明显更高。在50%SSP + 50%RP + PSB的帕迪中记录了相对较高的磷摄取,然后是25%SSP + 75%RP + PSB。在50:50与PSB结合使用SSP和RP的应用可维持恒定的磷池,以提供可用性和农艺有效性。psb提高了应用的SSP和RP的效率,从而增加了对农作物的磷的可用性,从而最终可以提高酸性土壤中稻田的产量。关键字:稻田,磷溶解细菌,单个超磷酸盐,岩石磷酸盐,营养吸收1。引言磷是植物生长所需的三种主要大量营养素之一,在各种代谢过程中起着至关重要的作用,包括能量转移,光合作用以及核酸和蛋白质的合成(Roch等,2019)[27]。土壤中的一般磷含量约为0.05%(按重量),只有0.1%的含量可用于植物摄取。磷在土壤中的可用性通常由于其强烈的固定和固定反应而受到限制,从而导致农作物的磷次磷摄取(Richardson等,2011)[26]。由于Al和Fe的固定,植物或Ca和Mg无法访问,或者Ca和Mg无法被植物吸收(Murphy and Sims,2012)[20]。为了减轻与磷缺乏症相关的挑战,农民通常采用磷肥料来增强养分利用率并促进植物生长。在这些肥料中,单个超级磷酸盐(SSP)和磷酸二硫酸盐(DAP)由于其释放速率变化和植物的可及性而被广泛使用(Azeem等,2018)[3]。他们为植物提供了容易获得的磷。以及与外部进口肥料相关的高成本,磷酸盐肥料的不加区分使用也有害。可以提及以下作用:过度的磷吸收导致磷毒性,从而提高植物组织中的磷浓度并破坏营养平衡;硼的毒性;铜吸收降低;铁在土壤中的固定;并防止根部吸收铁(Jupp等,2021和Renneson等,2016)
近年来,金属磷酸盐由于其独特的特性和多功能电化学行为而获得了众人瞩目的焦点。这些材料提供各种组成,晶体结构和氧化还原特性,使其在各种储能系统中的应用。本评论概述了金属磷酸盐在能量储存的最新进步,重点是它们的合成,电化学性能和潜在的应用。金属磷酸盐作为用于储能应用的新兴材料具有很大的希望。它们的可调特性,多功能电化学行为以及多种储能系统的潜力使它们成为下一代储能技术的潜在候选者。正在进行的研究和开发工作对于揭示金属磷酸盐的全部潜力和加速其整合到实用的能量存储设备中至关重要。关键字:金属磷酸盐;储能;超级球员;纳米复合
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
无定形铁钙磷酸盐 (Fe-ACP) 对某些啮齿动物牙齿的机械性能起着至关重要的作用,牙齿非常坚硬,但其形成过程和合成途径仍不清楚。本文报道了在柠檬酸铁铵 (AIC) 存在下含铁无定形磷酸钙的合成和表征。铁在所得颗粒中以纳米级均匀分布。制备的 Fe-ACP 颗粒在水、模拟体液和醋酸盐缓冲溶液 (pH 4) 等水性介质中高度稳定。体外研究表明这些颗粒具有良好的生物相容性和成骨特性。随后,利用放电等离子烧结 (SPS) 来固化初始 Fe-ACP 粉末。结果表明,陶瓷的硬度随铁含量的增加而增加,但铁过量会导致硬度迅速下降。可以获得硬度为 4 GPa 的磷酸铁钙陶瓷,高于人类牙釉质。此外,由铁钙磷酸盐组成的陶瓷表现出增强的耐酸性。本研究提供了一种制备 Fe-ACP 的新方法,并展示了 Fe-ACP 在生物矿化中的潜在作用以及作为制备耐酸高性能生物陶瓷的起始材料。
收到日期 2022-12-29,修改日期 2023-05-17,接受日期 2023-06-05 摘要 课题描述:在农业中,使用有益微生物作为生物防治剂被认为是对抗作物病害和农药抗性的生态替代方案。链霉菌属及其代谢物作为控制各种真菌植物病原体的有效药剂具有巨大的开发潜力。目的:从阿尔及利亚西部未开发的森林土壤中分离出一株放线菌。对分离菌株进行了针对植物病原真菌的体外抗真菌特性测试:从小麦植物茎中分离的黄曲霉、赭曲霉、寄生曲霉、扩展青霉和禾谷镰刀菌,以及磷酸盐溶解特性。方法:根据形态学、生理生化数据及16s rRNA基因测序,将该放线菌鉴定为加利拉链霉菌(Streptomyces galilaus)。使用不同的溶剂进行提取,并评估每种溶剂提取物的活性。采用琼脂孔扩散法测定粗提取物的抗真菌活性。结果:提取物 ext 5254 T002 和 ext 5294 T002 对所测试的五种真菌中的三种(赭曲霉、扩展青霉和禾谷镰刀菌)均表现出强的抗真菌活性。液相色谱和质谱 (HPLC/MS) 分析表明,提取物 5254 T002 中含有杀菌素 B 和一些链霉菌素与阿克拉霉素的混合物,而提取物 5294 T002 中的主要成分为布兰查醌。发现菌株T002具有溶解不溶性磷酸盐的能力。结论:结果表明,从森林土壤中分离出的链霉菌 T002 对导致小麦致病并在其自然栖息地之外溶解不溶性磷酸盐的真菌表现出良好的生物防治能力。关键词:链霉菌T002;抗真菌活性;磷酸盐的溶解;生物防治。
工业化和城市化的加速度将不可避免地导致HMS污染进入环境。尤其是在农业环境中,农业,施肥,灌溉和其他农业活动可能导致土壤中的HM浓度高,导致大多数HMS变得更加活跃,因此不可避免地会被农作物吸收(Dalcorso等,2013)。HMS由于其高毒性,隐藏性和团聚而成为作物影响最严重的污染物之一。hms可以通过抑制酶功能,破坏核酸结构并干扰植物营养素的摄取,从而对作物的生长,生物量和光合作用产生负面影响,从而对可持续食品产生构成威胁。此外,土壤中HMS的高含量也是农产品安全的挑战。过度摄入含有HM的食物会对人类健康造成不可逆转的伤害(Qin等,2021)。根际是植物吸收养分和微量元素的关键,它是土壤植物 - 微生物相互作用的界面。土壤中的重金属离子必须通过植物根部进入植物的体内。作为与植物最近的邻居,根微生物通过参与土壤腐殖质的形成和转化,土壤中养分的循环等,改善土壤结构和土壤肥力。同时,根微生物还可以分泌植物激素,以促进农作物对养分的吸收和利用,并增加农作物的根生长和生物量(Etesami和Maheshwari,2018; Manoj等,2020)。然而,高浓度的HM会通过诱导微生物代谢性疾病来引起非生物压力(Wyszkowska等,2013),例如蛋白质变性,细胞膜瓦解,改变酶特异性酶,特异性酶,破坏细胞功能和DNA结构(Abdu等,2017年的结构;微生物社区。值得注意的是,由HMS压力引起的根微生物结构和数量的变化可以严重影响根系的生态平衡,从而导致农作物生长的下降和农产品的质量(Shen等,2019)。因此,为了确保粮食安全和人类健康,迫切需要寻求适当的措施(土壤改善和微生物社区法规),以补救农田土壤中的HMS污染。
背景:葡萄糖-6-磷酸脱氢酶(G6PD)的缺乏效率是一种X连接的遗传性疾病,是全球公共健康问题,在包括亚洲,非洲和地中海在内的疟疾流行地区最普遍。g6pd-deenimentim个个体在用抗疟药(包括抗primaquine和tafenoquine)治疗后,患有急性溶血性贫血的高风险。但是,当前用于G6PD筛查的测试很复杂,并且通常会误导性案例,特别是对于中间G6PD活动的女性。对G6PD降低的定量点心测试(POC)测试的最新创新为改善人口筛查和预防疟疾时预防溶血疾病提供了机会。目的:评估有关有效G6PD筛查的定量点(POC)测试的类型和性能的证据,从而从根本上消除了疟疾疟疾感染。
SAFT已成功地将锂离子电化学应用于需要很高功率和安全性的国防,空间和商业应用。通过优化电化学和电力电池设计,SAFT开发了一系列锂离子产品,可以为关节打击战斗机或赛车应用提供超过50 kW/kg的功率,或者以> 250 WH/kg的速度用于需要高能量内容的应用。本文介绍了SAFT的高级液化电化学的研发工作。尤其是,高级磷酸盐阴极(例如LMFP)是针对PHEV2和军事BB-2590的高安全性和改进的电化学性能的。此外,诱人的结构LVPF化学以进一步改善的能量密度正在开发中。关键词高能;高安全性; LMFP,LVPF,固态电池
多孔电极理论(PET)通过描述固体颗粒和电解质中的电化学动力学和传输来广泛用于对电池动力学进行建模。标准PET模型依赖于活性材料热力学的黑盒描述,通常是通过拟合开路电位而获得的,该电路不允许对相分开材料进行一致的描述。多相PET(MPET),以使用热力学的白色或灰色盒描述来描述电池,并具有需要从实验数据中估算的其他参数。这项工作分析了MPET模型中参数的可识别性,包括标准动力学和扩散参数,以及用于主动材料自由能的MPET特异性参数。基于合成排放数据,对商用磷酸锂/石墨电池的MPET模型进行了线性化和非线性可识别性分析,该模型识别哪些模型参数是无法识别的,并且仅在不确定性的情况下才能识别哪些参数。可识别的参数控制阶段的分离,反应动力学和电解质传输,但不是固体扩散,与以低速率和高速速率的电解质扩散速率限制一致。本文还提出了减少参数可识别性问题的方法。