r = [ x, y, z ] 笛卡尔坐标系中的位置向量及其元素 a G = [ a G x , a G y , a G z ] 标准化重力加速度 er 小行星轨道偏心率 ar 小行星轨道半长轴(米) fr 小行星轨道真异常(弧度) U 与小行星谐波相关的标准化重力势能 d 太阳与小行星之间的距离 LU 距离单位 TU 时间单位 β 太阳辐射压标准化加速度 a SRP 太阳辐射压非标准化加速度(米/秒2) γ 反射率 p 0 太阳通量常数(千克·米/秒2) m 探测器质量(千克) A 探测器投影面积(米2) μ S 太阳引力参数(米3/秒2) μ 小行星引力参数(米3/秒2) P 勒让德多项式 l, m 考虑的谐波的阶数和次数 C lm , S lm 库存系数 φ 小行星固定框架中的纬度(弧度) λ 经度(弧度) n 平均运动(弧度/秒) CJ 雅可比积分(米2/秒2) vc 临界速度(米/秒) vo 二体问题中的圆轨道速度(米/秒) vm 速度裕度(米/秒) a 航天器轨道的半长轴(米) e 航天器轨道的偏心率 I 航天器轨道的倾角 W 航天器轨道上升节点的经度 w 航天器轨道的近地点增强 f 航天器轨道的真异常
hayabusa/hayabusa2小行星探索 - 使用离子发动机实现空间导航 - hayabusa/hayabusa2小行星探索 - 离子发动机深空操作 -
尖端技术构建美好未来:宇宙应用的先进技术 隼鸟2号的离子发动机及其潜在应用 隼鸟2号——自主导航、制导和控制系统 支持龙宫小行星精确着陆 隼鸟2号航天器利用太空激光雷达和遥感技术自主着陆 隼鸟2号:系统设计和运行结果 用于高速、大容量数据通信的光学卫星间通信技术 为三朝深空站开发30kW级X波段固态功率放大器 开发世界最高性能的薄膜太阳能电池阵列桨片
尖端技术构筑美好未来:先进宇宙应用技术 隼鸟2号离子发动机及其潜在应用 隼鸟2号——自主导航、制导和控制系统 支持龙宫小行星精确着陆 利用星载激光雷达遥感技术实现隼鸟2号航天器的自主着陆 隼鸟2号:系统设计和运行结果 用于高速、大容量数据通信的卫星间光学通信技术 为三朝深空站开发30kW级X波段固态功率放大器 开发世界最高性能薄膜太阳能电池阵列桨片
尖端技术构筑美好未来:先进宇宙应用技术 隼鸟2号离子发动机及其潜在应用 隼鸟2号——自主导航、制导和控制系统 支持龙宫小行星精确着陆 利用星载激光雷达遥感技术实现隼鸟2号航天器的自主着陆 隼鸟2号:系统设计和运行结果 用于高速、大容量数据通信的卫星间光学通信技术 为三朝深空站开发30kW级X波段固态功率放大器 开发世界最高性能薄膜太阳能电池阵列桨片
尖端技术构筑美好未来:先进宇宙应用技术 隼鸟2号离子发动机及其潜在应用 隼鸟2号——自主导航、制导和控制系统 支持龙宫小行星精确着陆 利用星载激光雷达遥感技术实现隼鸟2号航天器的自主着陆 隼鸟2号:系统设计和运行结果 用于高速、大容量数据通信的卫星间光学通信技术 为三朝深空站开发30kW级X波段固态功率放大器 开发世界最高性能薄膜太阳能电池阵列桨片
图 3 收集了两个测试离子源的测量电流 𝐼 sc 和 𝐼 ac 与质量流速 𝑚̇ s 的关系。在隼鸟 2 号源中,屏栅电流对两种推进剂都显示出一个最大值。氪的最大电流 (216 mA) 大于氙气 (171 mA),但达到的最大电流略高,分别为 0.24 (3.8) vs. 0.22 mg/s (2.2 sccm)。超过上述峰值后,𝐼 sc 从“高电流模式”(HCM) 降至低效的“低电流模式”(LCM),如 15–17 中所述,同时反射的微波功率增加。对于氙气,这种转变似乎更为突然。另一方面,氙气和氪气的𝐼ac最小值分别为0.18(1.8)-0.19毫克/秒(1.9 sccm)和0.16(2.5)-0.20毫克/秒(3.3 sccm)。
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
日本宇宙航空研究开发机构(JAXA)在2021财年(第四阶段中长期目标的第四年)中,在持续的疫情下,继续彻底实施针对COVID-19的感染控制措施,同时完成了多项重要任务。在低地球轨道上,宇航员野口和星出完成了国际空间站(ISS)的长期太空任务。特别是,星出成为第二位以国际空间站指挥官身份登上宇宙飞船的日本人。这些成就进一步增强了国际社会对日本作为国际空间站计划国际合作伙伴的信心,并正在稳步用于维持和提高日本在美国主导的阿尔特弥斯计划和月球轨道平台“Gateway”中的存在。2021财年,我们13年来首次招募日本宇航员,预计日本宇航员的活动将扩展到月球附近和月球表面,迄今为止收到了最多的申请者。放眼深空,对小行星样本返回任务隼鸟2号带回的龙宫小行星样本(岩石和沙子)进行初步分析,证实日本已获得世界上第一个最原始太阳系物质样本。在支持日本独立太空活动的太空运输领域,我们成功发射了目前所有的旗舰火箭H-IIA和Epsilon,并为政府和商业卫星的发射做出了贡献,进一步提高了我们世界领先的可靠性。至于日本新旗舰火箭H3运载火箭的开发,所有相关方共同努力,克服了第一级发动机的技术问题。同时,我们正在稳步努力改善工作环境,包括节能等环境考虑,并改善工作与生活的平衡。此外,为了进一步加速JAXA对可持续发展目标的努力并提高员工的意识,我们新制定了可持续发展目标基本行动方针。日本是世界上少数几个能够自主开展广泛太空活动的国家之一。在 JAXA,正在进行的具有挑战性的项目正在达到高潮。作为通过技术支持日本航空航天开发和利用的核心实施机构,在 2022 财年,我们将通过董事和员工的共同努力,勇敢地迎接任何艰难的挑战,努力创造成果,完成第 4 阶段,同时充分考虑环境,将我们的劳动成果回馈社会。2022 年 9 月
摘要:小行星采矿通过从近地天体 (NEO) 中提取有价值的材料,有可能缓解地球的资源稀缺问题。这一新兴产业的关键推动因素是太阳能,它为太空作业提供了可持续和高效的能源。本文探讨了太阳能在小行星采矿中的作用,重点介绍了光伏技术的进步和太阳帆电力系统的进展。本文还探讨了太阳能采矿作业的经济可行性、环境考虑因素和未来挑战。随着太空探索的进展,太阳能有望通过小行星采矿在太空经济发展中发挥核心作用。关键词:光伏电池、小行星采矿、太阳能帆船、推进系统、IKAROS、隼鸟号、隼鸟 2 号、太阳能帆 1. 简介几十年来,人类已经知道太空中存在有价值的矿物。事实上,目前的理论推测,绝大多数比铁重的金属之所以沉入地核,是因为它们比原始行星的炽热半固体地壳密度大。我们在地壳上看到的许多重金属都是几十亿年前与小行星碰撞带到地球上的。(多伦多大学)随着人类文明对具有奇异性质的稀有金属的需求不断增加,一些人将目光从地下矿山转向了行星际空间中的小行星。将小行星上的材料带回地球一直是科幻小说的范畴,直到 2010 年日本宇宙航空研究开发机构 (JAXA) 发射并返回隼鸟号 (Amos)。此后,JAXA 的隼鸟 2 号和美国宇航局的 OSIRIS-REx 任务也成功地从小行星和彗星上带回了材料。然而,这些任务纯粹是探索性的,并非为商业采矿而设计的。在大规模开采小行星实现商业可行性之前,需要克服几个技术挑战。一个重大挑战是需要能源,既要操作采矿设备,又要将开采的矿石运送到可以提炼和利用的地点。虽然隼鸟号和 OSIRIS-REx 任务使用太阳能光伏阵列为其机载设备供电,但它们使用化学火箭或离子推进系统往返目标小行星。这些对于长期商业开采来说是不切实际的。太阳能因其丰富和可再生性,可能成为满足小行星采矿能源需求的可行候选者。除了光伏电池用于发电外,太阳能还可以通过太阳帆的形式用于推进。本文将讨论利用太阳能进行小行星采矿的关键发展,强调对开发太空资源日益增长的兴趣和可行性。小行星采矿的必要性小行星富含金属,包括铂、金和稀土元素,以及水和其他挥发物。这些资源可以开采并运回地球或
