摘要:几丁质及其衍生物壳聚糖是自然界中极为丰富的聚合物,存在于各种海洋和非海洋物种的外壳和外骨骼中。由于它们具有生物相容性、生物降解性、无毒性和非免疫原性等优良特性,它们因其巨大的潜在生物医学应用而受到关注。壳聚糖的多阳离子表面使其能够与药物分子形成氢键和离子键,这是其最有用的特性之一。由于壳聚糖具有生物相容性,因此可用于药物输送系统。壳聚糖基纳米粒子的开发也促进了壳聚糖作为局部输送药物的药物输送系统的重要性。此外,几丁质可用于癌症治疗,作为将抗癌药物输送到特定部位的载体,并通过降低细胞活力发挥抗增殖作用。最后,壳聚糖可用作伤口敷料,以促进皮肤上皮细胞的更快再生和成纤维细胞的胶原蛋白生成。正如本综述中讨论的那样,几丁质和壳聚糖在医学领域有着多种应用。认识到这两种聚合物的生物医学应用对于组织工程和纳米生物技术的未来研究至关重要。
骨髓炎是由受感染,骨手术或关节置换后感染的局部传播引起的。本研究的目的是评估姜黄素/聚二苯二甲酸对兔子胫骨实验性骨髓炎的愈合的影响。诱导骨髓炎后,将二十名成年雄性新西兰兔子随机分为对照组,其中将动物视为对照,不使用脚手架,而NCMPST组则填充了所产生的骨骼缺陷,其中填充了多碳素和姜黄素的组合。骨样品在30天和第60天进行组织病理学评估。用于对骨髓炎的放射学评估,在手术后15、30、45和60天以时间间隔(手术日)以时间间隔制备X光片。为了评估血液学,在第0天(手术日),15、30、45和60进行血液。本研究的结果表明,与对照组相比,姜黄素纳米复合材料显着改善了兔胫骨实验性骨髓炎模型的愈合过程(P <0.05)。总而言之,姜黄素/多丙酮酸酮纳米复合支架对愈合过程显示了积极的影响。
摘要:生物学为自修复工程复合材料和聚合物的开发提供了宝贵的灵感。特别是,从蛋白质生物聚合物(尤其是贻贝足丝)中提取的化学级设计原理为合成聚合物中自主和内在修复的设计提供了灵感。贻贝足丝是一种由极其坚韧的蛋白质纤维组成的无细胞组织,由贻贝产生,以牢固地附着在岩石表面上。在表观塑性屈服事件之后,线表现出自修复响应,以时间依赖的方式恢复初始材料特性。最近对定义这种反应的结构-功能关系的生化分析揭示了基于 Zn 2+ 离子和组氨酸氨基酸残基之间的金属配位键的牺牲交联的关键作用。受此例子的启发,许多研究小组开发了基于组氨酸(咪唑)-金属化学的自修复聚合物材料。在这篇评论中,我们详细概述了目前对足丝自修复机制的理解,并概述了基于组氨酸和咪唑的合成聚合物的当前发展水平。
1 Rise-Health,医学科学系,健康科学学院,贝拉大学内政部,AV。Infante D. Henrique,6200-506Covilhã,葡萄牙2 CNC -UC- COIMBRA大学神经科学与细胞生物学中心3 CIBB 3 CIBB- COIMBRA大学Innovative Biomedicine for Innovative Biomedicine in Center of Coimbra University,Coimbra University,Coimbra University of Coimbra 4 Cryastaminal,Cryastaminal,Sathlababababal s.a.,Portugal
“传统上,干细胞主要是从骨髓或脐带血中收获的,都是相对难以获取的来源。在2001年,发现脂肪组织不仅包含脂肪细胞,而且还包含间充质干细胞 - 支持在组织损伤的情况下充当干细胞的细胞。这为干细胞疗法提供了更容易获得的替代方法。从那时起,这些干细胞已被研究并用于各种应用,包括神经系统疾病,骨关节炎,疼痛治疗和伤口愈合。”
抽象糖尿病是一组以高血糖水平为特征的慢性疾病。糖尿病患者比非糖尿病患者具有维持骨质疏松性骨折的风险。骨折愈合通常在糖尿病患者中受损,我们对高血糖对骨折愈合的损害影响的理解仍然不足。二甲双胍是2型糖尿病(T2D)的一线药物。然而,它对T2D患者骨骼的影响仍有待研究。为了评估二甲双胍对断裂愈合的影响,我们比较了T2D小鼠中封闭固定骨折,非固定径向骨折和股骨钻孔损伤模型的愈合过程。我们的结果表明,在所有损伤模型中,二甲双胍挽救了T2D小鼠中延迟的骨骼愈合和恢复。体外分析表明,与WT对照相比,通过二甲双胍处理挽救了造成源自T2D小鼠的骨髓基质细胞(BMSC)的增殖,成骨,软骨发生(BMSC)。此外,二甲双胍可以有效地挽救从体内T2D小鼠中分离出的BMSC的受损谱系承诺受损,这是通过受体T2D小鼠中BMSC植入物的皮下骨形成评估的。此外,在高血糖状态下,在接受二甲双胍治疗的T2D小鼠中,在高血糖状态下的软骨骨化中软骨形成的safranin o染色显着增加。二甲双胍还营救了从T2D小鼠分离的BMSC的软骨细胞盘形成。对于维持软骨细胞体内平衡很重要的软骨细胞转录因子SOX9和PGC1α在二甲双胍治疗的MKR小鼠的骨折部位分离的愈伤组织组织中都显着上调。总的来说,我们的研究表明,二甲双胍促进了骨骼愈合,更具体地说是骨形成和软骨形成,在T2D小鼠模型中。
在诸如生物医学和人机互动之类的有吸引力平台的快速发展已经对具有高强度,灵活性和自我修复功能的智能材料产生了紧迫的需求。然而,由于非共价键合固有的低强度,高强度,低弹性模量和治愈能力之间的交易挑战了现有的自我修复能力材料。在这里,从人类纤维细胞中汲取灵感,基于两亲离子限制器(7000倍的体积单体捕获)中的分离和重新构造,提出了一种单体捕获合成策略,以开发出Eutectogel。从纳米配置和动态界面相互作用中获得的好处,形成的配置结构域的分子链主链机械地加强了软运动能力。所产生的共凝剂表现出优异的机械性能(比纯聚合的深层共晶溶剂比抗拉伸强度和韧性高1799%和2753%),出色的自我修复效率(> 90%),低切向切向模量(在工作阶段的0.367 MPA)以及启发人类的人类活动。该策略有望为开发高强度,低模量和自我修复的可穿戴电子设备提供新的视角,适合人体运动。
这项研究分析了在尼日利亚尼日尔三角洲地区的康复中心中生物素设计作为一种可持续治愈技术的潜力。从该地区丰富的生物多样性和文化过去汲取了生物设计概念,作为一种提高康复患者的身心健康的技术。通过将自然组件和模式集成到构造的环境中,康复机构可以提供有利于治愈和恢复的治疗场所。在康复机构的背景下,采用生物素设计概念可以为患者提供一些好处,包括减轻压力,增强的情绪和更快的康复。本文提出了在尼日尔三角洲的康复中心应用生物素设计的策略,并研究了这种方法的社会环境益处。
目标:这项研究评估了salvia officinalis(SAGE)的银纳米颗粒(AG NP)和水醇提取物如何影响血管内皮生长因子(VEGF)和基质金属蛋白酶2(MMP2)基因的血管内皮生长因子(VEGF)的表达水平,在伤口中起作用。方法:在48名成年雄性小鼠的背面诱导切除伤口。用AGNP和Salvia officinalis提取物在单独的动物组中进行14天的伤口治疗。在治疗两周后,去除伤口皮肤组织,并通过实时聚合酶链反应进行基因表达分析。结果:结果表明,与对照的伤口皮肤相比,用0.05%Ag NP处理的伤口皮肤中两个靶基因(VEGF和MMP2)的表达显着增加。与凡士林组相比,用鼠尾草提取物处理的伤口组织中VEGF基因的表达显着增加,但MMP2基因的表达并未发生显着变化。与单独用0.5%SAGE提取物治疗的伤口组织相比,用0.5%SAGE提取物和0.05%Ag NP处理的伤口组织中的两个靶基因表达显着增加。与单独用0.05%Ag NPs治疗的人相比,用SAGE提取物和AG NP处理的伤口组织中两个靶基因的表达没有显着差异。结论:基于上述结果,可以得出结论,鼠尾草和低剂量的AG NP的水醇提取物的组合表现出明显的愈合活性,并且可以作为伤口愈合管理的可行选择。
基质金属蛋白酶(MMP)是一种内肽,参与了伤口愈合的所有阶段。在炎症期间,MMP去除所有受损的蛋白质和临时ECM。在增殖阶段,MMPS降解毛细血管基底膜以促进血管生成和细胞迁移。同时,在组织重塑中,MMP活性降低并诱导重塑生长因子的释放。在这种情况下,金属蛋白酶(TIMP)的组织抑制剂通过与特定位点结合并防止ECM分解过度在平衡MMP活动中起关键作用(Ayuk等,2016; Kandhwal等人,2022年)。但是,在某些条件下,MMP和TIMP的失衡导致康复过程不佳。MMP1是一种显着的colla-基因,在血管起源期间在伤口部位表达。它在伤口愈合中重新排斥和迁移后,它作为真皮的重要组成部分降解。MMP1活动仅在关闭伤口之前有效,然后在重塑阶段自动关闭。然而,高水平的MMP-1与慢性伤口相关,并导致愈合时间延长(Muller等,2008)。例如,糖尿病足溃疡患者的MMP1大幅增加。MMP1/TIMP1的比率用作糖尿病足溃疡伤口愈合的预测因子。虽然比TIMP1的比率更高,但治疗效果越糟。先前的研究发现,慢性伤口渗出液的MMP水平高于急性伤口渗出液(Lobmann等,2002)。MMP12,一种金属弹性酶,在伤口愈合中也起着重要作用。它会破坏细胞外基质弹性蛋白,并使负责发炎和肉芽肿发育的免疫细胞浸润。MMP12对1型糖尿病患者的轻度炎症产生了影响。MMP12与1型糖尿病患者的轻度炎症有关,并在1型糖尿病患者的肠道损伤中与腹腔疾病呈正相关(Bister等,2005)。
