摘要 简介 二十二碳六烯酸 (DHA) 是一种 omega-3 脂肪酸,对大脑发育很重要,并可能对神经发育结果产生影响。在双组、随机、双盲、安慰剂对照的母体补充 Omega-3 以减少极度早产儿支气管肺发育不良试验中,极度早产儿 (<29 周胎龄) 补充高剂量 DHA 或安慰剂,直至其达到月经后 36 周龄。我们建议对这些儿童进行长期的神经发育随访。该方案详细说明了 5 岁时的随访,旨在 (1) 确认我们的长期招募能力和 (2) 确定新生儿补充 DHA 后学龄前神经发育结果的范围。方法与分析 这项长期随访涉及来自魁北克五个地点的 194 名儿童,这些儿童的母亲(n=170)在他们年满 5 岁时随机分配接受 DHA(n=85)或安慰剂(n=85)。主要结果指标与长期招募能力有关,如果 75% (±10%, 95% CI) 的符合条件的儿童同意这项 5 年随访研究,则我们判定为成功。我们将对母亲进行访谈,以评估学龄前神经发育的各个方面(执行功能、行为问题、整体发展和健康相关的生活质量),并使用标准化神经发育问卷进行评估。此外,将对一部分母亲进行半结构化访谈,以确定她们的接受程度,并确定她们最终参与下一阶段试验的障碍和推动因素。这项随访研究将需要大约 22 个月才能完成。伦理与传播 本研究已获得魁北克大学拉瓦尔分校研究伦理委员会 (MP-20-2022-5926) 的批准。母亲在参与本研究前将提供知情同意书。研究结果将
我们考虑在蜂窝网格(“ XYZ 2”代码)上的拓扑稳定器代码。该代码的灵感来自Kitaev Hon-Eycomb模型,是对Wootton [1]讨论的“匹配代码”的简单实现,并具有特定的边界实现。它利用了重量 - 六个(XY ZXY Z)Plaquette稳定器和重量二(XX)链接稳定器上的链接稳定器在pla-Nar六角形网格上,由2 d 2 QUBITS组成,由2 d 2 QUBITS组成,用于代码距离D,具有重量的三个固定器,在边界处稳定了一个逻辑量子。假设完美的稳定剂测量方法,我们使用最大似然解码来研究代码的性质。对于纯x,y或z噪声,我们可以通过分析求解逻辑故障率,阈值为50%。与旋转的表面代码和XZZX代码相比,这些代码仅对纯Y噪声,d 2 2 2,此处的代码距离为纯Z和纯Y噪声的2 d 2。具有有限Z偏置的噪声的阈值与XZZX代码相似,但较低的亚阈值逻辑故障率显着较低。该代码具有沿三角晶格的三个方向,具有分离的plaquette缺陷对隔离错误的分离综合征的特性,这可能对基于有效的匹配或其他近似分解的解码有用。
量子发射器需要多种从量子传感到量子计算的应用。六角硼硝酸盐(HBN)量子发射器是迄今为止最有价值的固态平台之一,由于其高亮度,稳定性和自旋光子界面的可能性。但是,对单光子发射器(SPE)的物理起源的理解仍然有限。在这里,我们在整个可见频谱中观察到HBN中的密集SPE,并提供了混凝土和结论性的证据,表明这些SPE中的大多数可以通过供体受体对(DAPS)很好地解释。基于DAP过渡生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作是对HBN中SPE的物理理解及其在量子技术中的应用。
使用六氟化硫 (SF 6 ) 等离子体对硅 (Si ) 进行低偏压蚀刻是制造电子设备和微机电系统 (MEMS) 的宝贵工具。这种蚀刻提供了几乎各向同性的蚀刻行为,因为低电压偏置不会为离子提供足够的垂直加速度和动能。由于这种近乎各向同性的行为,上述等离子体蚀刻可作为湿法蚀刻的替代方案,例如在 MEMS 和光学应用中,因为它提供了更清洁、更精确的可控工艺。然而,各向同性的程度以及最终的表面轮廓仍然难以控制。在这项工作中,我们将三维特征尺度地形模拟应用于 Si 中的低偏压 SF 6 蚀刻实验,以帮助工艺开发并研究控制最终表面几何形状的物理蚀刻机制。我们通过准确再现三个不同的实验数据集并详细讨论地形模拟中涉及的现象学模型参数的含义来实现这一点。我们表明,与传统的严格各向同性和自下而上的方法相比,我们的现象学自上而下的通量计算方法更准确地再现了实验结果。反应堆负载效应被视为模型蚀刻速率的普遍降低,这通过比较不同负载状态下模拟的蚀刻深度与实验确定的蚀刻深度得到支持。我们的模型还能够使用给定反应堆配置的单个参数集,准确地再现不同掩模开口和蚀刻时间的报告沟槽几何形状。因此,我们提出模型参数,特别是平均有效粘附系数,可以作为反应堆配置的代理。我们提供了一个经验关系,将反应堆配方的平均粘附系数与可测量的蚀刻几何各向同性程度联系起来。这种经验关系可以在实践中用于 (i) 估计独立实验的平均有效粘附系数和 (ii) 微调蚀刻几何形状。
背景:硬化菌核(SS)是一种广泛的宿主范围,可影响400多种植物物种。ss cys camelina sativa(CS)的茎腐病疾病是一种适用于低输入作物和工业油属性的Allohexaploid crucifer物种,适用于生物燃料和润滑剂。组织化学和分子研究已将C. sativa中的SS抗性与细胞壁木质化联系起来(Eynck等,2012),并报道了CSS抗性线CN114263中的Cinnamoyl-COA还原酶4(CSCCR4)基因的组成型表达。现代繁殖工作(例如基因编辑)需要改善商业线条,并限制农作物损失的风险,这对生产者来说是重要的。目的:为了研究单极生物合成的重要性以及CSCCR4在Camelina对SS耐药性中的作用,我们使用CRISPR/CAS9介导的基因编辑产生了CN114263 Camelina系的CSCCR4敲除突变体。材料和方法:三十T1植物是通过花卉浸入转化产生的,然后是草甘膦喷雾,该植物在筛选程序的第一步中使用,并通过PCR方法确认。使用数字液滴PCR(DDPCR)确定T1和T2祖细胞中T1和T2祖细胞中的T-DNA拷贝数变化T-DNA CNV,并且通过下降测定技术对T1和T2代的CSCCR4同源物的三个副本中的三个副本中的突变发生。为确保T2植物中的突变体是真实的,对其中三个的cas9/ grna特异性裂解点侧面进行了topo ta测序。在T2代生成中,筛选了CSCCR4基因中的潜在突变。结果:在T1代中,确认了25种植物,这些植物在相应的Camelina基因组中具有1至9个TNA拷贝。在CSCCR4的三个副本中证明了各种类型的突变,包括插入和缺失。实际上,CRISPR系统可以分别在编号T2-Plant 10,T2-Plant 15和T2-Plant 19的事件中删除一个,两或三个副本。T3-plant 19在上一代中所有版本的CSCCR4中表现出突变具有易感性的螺旋杆菌侵袭,并保留为实际CSCCR4突变体材料,以进一步研究骆驼 - 螺旋菌相互作用。CSCCR4中的突变是通过容易出错的非同源端连接(NHEJ)核DNA修复途径发生的。ss挑战早期开花的T3一代。与WildType对照母体CN114263相比,在CSCCR4位置217处的突变的T3植物在CSCCR4位置217处的过早停止密码子受到了损害。结论:使用DDPCR很容易识别T1和T2祖细胞中CSCCR4同源物中的T-DNA CNV和突变的发生。我们说明,CRISPR/CAS9介导的突变是一种体面的技术,可以用来加快突变线的发展,可以帮助您弄清CSCCR4基因在防御:sativa C. c. c. c.c。sativa中的活性,作为前瞻性石油种植作物的生物柴油生产。
照射后C-Au-PFH-NPs组荧光信号分布与照射前相比均有明显改善。除肝脏和脾脏外,两组主要脏器荧光信号分布均无明显改变(图5B和C)。非靶向组肿瘤部位荧光信号较低可能是由于EPR效应,促使肿瘤组织中发生惰性结合。相比之下,靶向组荧光信号的改善主要归因于C225介导的内吞机制。此外,C-Au-PFH-NPs可以突破肿瘤的生物屏障。微泡振荡、空化和破坏后,C-Au-PFH-NPs在目标部位的聚集得到证实。在超声靶向去除微泡的影响下,声微泡振荡和破碎过程中,细胞膜会被打断,其通透性会降低。
班加罗尔,卡纳塔克邦 摘要 六足步行机器人几十年来一直受到广泛关注。然而,直到最近,才有人构思、设计和制造出性能适合实际应用的高效步行机器。如今,许多开支都花在了采用原始安全措施保护边境免受非法侵入者的侵扰上。一些军事组织在危险地区借助机器人的帮助,而军人来做这些事情则不那么有效。这些机器人配备了摄像头、传感器、金属探测器和视频屏幕。我们系统的主要目标是实现自动枪支瞄准,包括一些附加参数,如 Wi-Fi 模块,用于摄像头在视频屏幕上处理实时数据,以及红外传感器以追踪入侵者。因此,使用 Wi-Fi 的拟议系统减少了防御错误,并保护国家免受敌人侵害。 关键词:人工智能机器人、军用机器人、监视、Raspberry Pi、人脸识别系统 1. 引言 确保边境安全被视为任何国家的重要方面。恐怖分子渗透以及生物和非生物的非法入境等活动是一个大问题。由于边境绵延数百英里,地形极端,条件不利,因此需要大量的人力和资产。因此,当务之急是设计一个自动化边境监控系统,尽量减少人工协助。此外,如果系统检测到可疑情况,它必须能够做出必要的决定,从而采取行动,并向人类控制人员发出警报信息。如果有任何人非法入境,系统会将其识别为入侵者,从而向控制室发出通知,并立即用激光枪瞄准他们。
采用光学显微镜方法对二维 (2D) 材料中的缺陷进行纳米级表征是光子片上器件的关键步骤。为了提高分析吞吐量,最近开发了基于波导的片上成像平台。然而,它们固有的缺点是必须将 2D 材料从生长基底转移到成像芯片,这会引入污染,可能会改变表征结果。在这里,我们提出了一种独特的方法来规避这些不足,即直接在氮化硅芯片上生长一种广泛使用的 2D 材料(六方氮化硼,hBN),并对完整的原生材料中的缺陷进行光学表征。我们将直接生长方法与标准湿转移法进行了比较,并证实了直接生长的明显优势。虽然在当前工作中用 hBN 进行了演示,但该方法很容易扩展到其他 2D 材料。
我们报告了在六方氮化硼封装的双栅极单层 WS2 中的电子传输测量结果。使用从室温到 1.5 K 工作的栅极欧姆接触,我们测量了本征电导率和载流子密度随温度和栅极偏压的变化。本征电子迁移率在室温下为 100 cm2/(Vs),在 1.5 K 下为 2000 cm2/(Vs)。迁移率在高温下表现出强烈的温度依赖性,与声子散射主导的载流子传输一致。在低温下,由于杂质和长程库仑散射,迁移率达到饱和。单层 WS2 中声子散射的第一性原理计算与实验结果高度一致,表明我们接近这些二维层中传输的本征极限。