我们报告了在六方氮化硼封装的双栅极单层 WS2 中的电子传输测量结果。使用从室温到 1.5 K 工作的栅极欧姆接触,我们测量了本征电导率和载流子密度随温度和栅极偏压的变化。本征电子迁移率在室温下为 100 cm2/(Vs),在 1.5 K 下为 2000 cm2/(Vs)。迁移率在高温下表现出强烈的温度依赖性,与声子散射主导的载流子传输一致。在低温下,由于杂质和长程库仑散射,迁移率达到饱和。单层 WS2 中声子散射的第一性原理计算与实验结果高度一致,表明我们接近这些二维层中传输的本征极限。
众所周知,连贯的光是可实现的最稳定的经典光,它表现出泊松统计分布。shot噪声代表了这种固有的随机性的极限,并与使用pois-sonian光源发射的光子的时间分离相关。因此,一个更正常或次佛森的光子流揭示了基础辐射过程的量子性质。1在任何给定时间发出不超过一个光子的完美常规光源,称为单光子源(SPS),代表了各种量子技术的必不可少的构建块,包括量子计算方案,玻色子计算方案,玻色子采样,精确的Metrology,Precision Metrology,以及安全的通信应用以及量子密钥分布,例如量子密钥分布。2–6
ETMOS 项目旨在通过分子束外延 (MBE) 和脉冲激光沉积 (PLD) 开发电子级过渡金属二硫属化物 (TMD) 的大面积生长。根据最近关于在六方晶体衬底上生长的 MoS2 外延质量的报告和初步结果,我们将推动这些材料在宽带隙 (WBG) 六方半导体 (SiC、GaN、AlN、AlGaN 合金) 和绝缘蓝宝石上的外延层生长。五个合作伙伴在薄膜生长 (CNRS、SAS)、高级特性和模拟 (CNR、HAS、U-Pa)、加工和电子设备原型 (CNR) 方面拥有互补的技能。将在不同衬底 (Si、蓝宝石、SiC、块状 GaN) 上生长 WBG 半导体模板/薄膜,以完全控制起始材料的特性并制备外延就绪表面,从而实现高质量和均匀的 TMD MBE 和 PLD 生长。沉积范围将从单层 (1L) 到几层 (最多 5) MoS2 和 WSe2,并在直径最大为 100 毫米的晶片上控制亚单层厚度。将开发 MBE 或 PLD 期间的 TMD 替代掺杂,重点是 MoS2 的 p+ 掺杂,这对设备应用具有战略意义。除了生长设施外,ETMOS 联盟还拥有整套形态、结构、化学、光学和电扫描探针表征,有助于在每个生长步骤中实现高质量。将通过专门设计的测试设备研究 TMD 的电性能 (掺杂、迁移率、电阻率等) 以及跨 TMD/WBG 异质结的电流传输。实验将通过生长模拟和 WBG 上 TMD 电子能带结构的从头计算来补充。将制定多尺度表征协议,以将我们的外延 TMD 与使用相同或互补沉积方法的其他小组的结果进行对比。最后,将制造利用 TMDs/WBG 异质结特性的器件原型,包括:(i) 基于 p+-MoS2 与 n-GaN 或 n-SiC 原子突变异质结的带间隧穿二极管和晶体管;(ii) MoS2/GaN 和 MoS2/SiC UV 光电二极管;(iii) 具有 Al(Ga)N/GaN 发射极和 1L TMD 基极的热电子晶体管。开发的材料/工艺的目标是在项目结束时达到 TRL=5。由于 ETMOS 合作伙伴与 SiC 和 GaN 领域的领先工业企业(STMicroelectronics、TopGaN、Lumilog)保持着持续合作,因此来自行业的代表将成为 ETMOS 顾问委员会的成员,为工艺与生产环境的兼容性提供指导。我们的 TMDs 生长活动与常用的 CVD 方法高度互补。我们预计与石墨烯旗舰项目第 1 和第 3 部门的团队将产生强大的协同作用,从而促进欧洲在 TMD 和设备应用大面积增长方面的能力。
在电子设备结构中引入层状二维 (2D) 材料是提升电子设备性能和提供附加功能的一种有趣策略。例如,石墨烯(导电性)已用作电容器 [ 1 ] 和电池 [ 2 ] 中的电极,而过渡金属二硫属化物 (TMD),例如 MoS 2 、 WS 2 和 WSe 2(半导体性),常用作场效应晶体管 (FET) 和光电探测器 [ 3 – 5 ] 中的沟道。六方氮化硼 (h-BN) 是由 B 和 N 原子排列成 sp 2 六方晶格的二维层状材料,其带隙为 5.9 eV [ 6 ]。因此,h-BN 是一种电绝缘体,并且在许多不同的应用中非常有用。到目前为止,h-BN 已被证明是一种非常可靠的 FET 栅极电介质,并且能够比高 k 电介质更好地抵抗电应力 [7,8],因为