磁场传感器(磁力计)是一种测量磁场强度、方向或相对变化的设备。最早的磁场传感器是指南针,用于确定地球磁场的方向 [1]–[4]。可以说,第一台磁力计是由卡尔·弗里德里希·高斯于 1833 年发明的,用于测量绝对磁强度 [3]–[7]。它由一根金纤维水平悬挂的永久条形磁铁组成。高斯用它来测定地球磁场的强度。他们与威廉·爱德华·韦伯一起继续开发磁力计,并进一步改进它,直到 19 世纪 40 年代末。除了高斯和韦伯,19 世纪还有其他几位科学家开发了新型磁场传感器。然而,磁力仪技术在 20 世纪初发生了根本性变化,当时通过某些线圈结构的电流被用于确定局部磁场的性质 [3]–[14]。这种新方法使得开发更精确的磁场传感器成为可能,同时显著缩短了测量时间。从 20 世纪中叶开始,材料科学的进步带来了非常精确的微型磁力仪,如今,磁力仪被认为是多个系统的关键组件 [8]–[12]、[15]。
目前,似乎不可想象是对微生物在人类健康或内共生膜中的昆虫中的主要作用不可思议。尽管很久以前发现了微生物内生菌,但对植物相关微生物的作用知之甚少。某些内生菌是水平传播的,而另一些则是种子传播。它们共同影响植物健康。有益的内生菌可以通过增加植物对生物和非生物胁迫的耐药性来促进植物的生长和产量。最近,可用于研究植物生物组的工具有了很大的改进,可以更好地理解在植物一级发生的迷人相互作用。本评论重新定义了“内生菌”和“内生菌”的概念框架,重点是细菌内生细菌的复杂动力学。系统地检查了形成途径和分析内生菌,可以全面探索有关植物 - 微生物相互作用的复杂动力学。此外,对生物和非生物因素如何影响内生细胞组的评估还提供了对植物相关微生物的适应性和弹性的重要见解。我们的综合分析将基因组见解与环境因素相结合,从而对细菌内生菌的功能作用提供了细微的观点。因此,一个新的包容性定义对于准确地表示植物微生物组中相互作用的复杂性以及相关概念的整体情况至关重要。
前三次工业革命是机械化、电力和信息技术的结果。如今,物联网和服务引入制造业环境,正在引领第四次工业革命。未来,企业将建立全球网络,以信息物理系统 (CPS) 的形式整合其机械、仓储系统和生产设施。在制造环境中,这些信息物理系统包括智能机器、存储系统和生产设施,它们能够自主交换信息、触发动作并相互独立控制。这有助于从根本上改进涉及制造、工程、材料使用和供应链及生命周期管理的工业流程。已经开始出现的智能工厂采用了一种全新的生产方式。智能产品具有唯一可识别性,可以随时定位,并且了解自己的历史、当前状态以及实现目标状态的替代路线。嵌入式制造系统垂直连接工厂和企业内的业务流程,水平连接分散的价值网络,可实时管理从下订单到出站物流。此外,它们都
WT9 Dynamic LSA / Club 飞机是单引擎、双座(并排排列)、悬臂式低翼飞机,带有十字形尾翼。主要结构由玻璃和碳复合材料组成。飞机配备固定三轮起落架,带有可操纵前轮。飞机由 4 缸、水平对置、风冷和水冷、化油器 4 冲程 ROTAX 912 ULS2 发动机驱动,最大功率为 73.5 千瓦(100 马力),转速为 5800 rpm。该飞机的基本版本配备螺旋桨 EVRA PerformanceLine 175/xxx/805.5。它是 3 叶地面可调螺旋桨,直径为 1750 毫米(68.9 英寸)。它具有木质核心叶片,外面覆盖着玻璃纤维,前缘加固。叶片安装在铝制轮毂中。螺旋桨轮毂连接到法兰和底板上,并固定在发动机的螺旋桨法兰上。复合材料螺旋桨固定在底板上。牵引版本配备螺旋桨 KW-31 (EASA.P.177),这是一种 3 叶片电动飞行可调式飞机螺旋桨,直径为 1.726 米 (67.95 英寸)。叶片由实木和复合材料组合而成。螺旋桨可以手动或自动模式作为恒速螺旋桨操作。
联邦政府将提出一项未来研究和创新战略,该战略巩固了其研究和创新政策的目标和活动,同时在其各部委之间横向设定优先事项和里程碑。未来研究和创新战略旨在满足当前危机和必要的转型过程对政府、政策和公共管理的新要求。在关键的新兴发展领域,联邦政府将参与更激烈的全球技术竞争,并加速可持续发展。未来,它还将越来越多地促进社会创新,以加速转型进程。在其研究和创新政策中,联邦政府考虑了整个创新链,从基础研究作为潜在新解决方案的发射台,到开发可销售和社会创新。在其 2022 年年度报告中,EFI 还强调,公共行政和政府也必须经历全面的现代化过程,并且必须加强欧洲和国际研究和创新合作。这将确保洞察力转化为创新,利用数据潜力,培养人才,并吸引新参与者进入研究和创新系统。应该鼓励人们参与并大胆尝试新事物——开启成功转型的十年。
在减小移动设备外形尺寸和增加功能集成度方面,晶圆级封装 (WLP) 是一种极具吸引力的封装解决方案,与标准球栅阵列 (BGA) 封装相比具有许多优势。随着各种扇出型 WLP (FOWLP) 的进步,与扇入型 WLP 相比,它是一种更优化、更有前景的解决方案,因为它可以在设计更多输入/输出 (I/O) 数量、多芯片、异构集成和三维 (3D) 系统级封装 (SiP) 方面提供更大的灵活性。嵌入式晶圆级球栅阵列 (eWLB) 是一种扇出型 WLP,可实现需要更小外形尺寸、出色散热和薄型封装轮廓的应用,因为它有可能以经过验证的制造能力和生产良率发展为各种配置。eWLB 是一种关键的先进封装,因为它具有更高的 I/O 密度、工艺灵活性和集成能力。它有助于在一个封装中垂直和水平地集成多个芯片,而无需使用基板。结构设计和材料选择对工艺良率和长期可靠性的影响越来越重要,因此有必要全面研究影响可靠性的关键设计因素。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
摘要 — 传统能源的快速枯竭和全球变暖问题促使世界各地的研究人员提出最佳的能源解决方案。风能和太阳能等可再生能源已被广泛用作替代能源。在这项工作中,实施了一个集成太阳能和风能系统,旨在从可用的可再生能源(如太阳辐射和风能)中产生最大的输出功率。该系统由两个太阳能电池板和水平旋转的风力叶片组成。还使用了一个储能系统和一个充电控制器,旨在提高整体能量转换效率。结果表明,与单独工作的太阳能电池板和风力系统相比,该系统表现出了更优越的性能。该系统每天平均产生 61.729 Wh 的能量。因此,估计该系统每年可产生约 207.4 kWh 的输出功率。在进行的实验中,太阳能电池板是发电的主要来源,而风力系统在太阳缺电时充当次要能源。此外,安全系数经计算在 2 的范围内,表明所提出的系统可以根据马来西亚的工业安全限度运行。
摘要:设计电动汽车的电池时,必须考虑不同的参数,以从机械和热的观点中获得电池/模块/电池的最安全排列。在这项研究中,分析锂离子细胞的热失去繁殖机制是在电池组中的电池组中的布置的函数,以防发生热失控的电池组。目的是使用对属于燃烧车辆的电池的电池的结构和化学成分进行微观分析,以确定电池组中哪种单元/模块排列最关键。及其最终条件与相同类型的新细胞的状况进行了比较。以这种方式,比较了热失控后阴极,阳极和分离器的结构和化学组成。进行了这项研究以获取信息,以了解锂离子细胞的机械性能及其在热失控加热后的行为,从而导致火力传播。通过进行的分析,得出结论,放置在垂直排列的细胞的行为比水平排列中的细胞差。关于电池的安全性,这项研究的结果将使我们能够确定电池组中电池组的哪种布置和结构,并且由于热衰竭,电池组中的单元格更安全。