以动量守恒为起点,推导出一个多相机械能量平衡方程,该方程考虑了移动控制体积内存在的多个材料相和界面。该平衡应用于固定在三相接触线上的控制体积,该接触线在粗糙且化学均匀且惰性的固体表面上连续前进。使用控制体积内材料行为的半定量模型,进行数量级分析以忽略不重要的项,根据三相接触线周围发生的界面动力学知识,生成一个预测接触角滞后的方程。结果表明,三相接触线“粘滑”运动期间发生的粘性能量耗散是粗糙表面接触角滞后的原因,可以通过中间平衡界面状态的变化来计算。该平衡适用于 Wenzel、Cassie–Baxter 和 Fakir(超疏水)润湿状态,表明对于 Fakir 情况,在界面前进和后退过程中都会发生显著的耗散,并将这些耗散与“粘滑”事件周围发生的界面面积变化联系起来。
渗透性和矫正性是评估软磁性材料的最重要参数。最柔软的磁性材料的标准要求非常高的渗透性和 /或极低的可矫正性,这些特性需要各向异性能量,磁弹性能趋于零。当对纳米晶材料的粉状类型的纳米晶体材料进行热处理时,这些独特的需求就会满足。为了将微结构特征与合金的软磁性和在不同温度下退火的环形样品的最初渗透性相关联,在室温下使用10 -3 OE的AC场测量。磁性磁滞是永久磁性材料的有用属性,我们希望在其中存储大型亚稳态磁化。另一方面,大量的应用需要每个周期的小磁滞损失。这些包括电感器,低频和高频变压器,交替的电流机器,电动机,发电机和磁性放大器的应用。目前的论文着重于测量其无定形和纳米晶体状态的样品的渗透率和磁滞回路。关键字:渗透性,胁迫,磁弹性,finemet,纳米晶,磁滞等。
本文建立了一个微观基础的滞后一般均衡模型,其中,为了应对需求冲击,具有异质性的企业结构发生变化,通过“创造性破坏”的过程改变了经济的全要素生产率。滞后从根本上挑战了现有的稳定政策共识:由于需求创造了自己的供应,因此完全稳定需求冲击变得次优;财政乘数可能远大于 1;机会主义的货币政策制定者对正向需求冲击采取宽松的政策反应,但对负向需求冲击采取果断的货币刺激,可以带来巨大的福利收益。
本文表明,可以在简单的非线性共振电路中观察到捏合的滞后,该谐振电路包含一个单个二极管,该二极管表现为电压控制开关。数学模型是串联和并行谐振电路的数值验证的。发现捏合环的叶面积随着频率的增加而增加,并且有多个捏合点可以使用奇怪的对称非线性(例如立方非线性)。实验,以证明具有单个二极管和两个抗平行二极管的捏滞存在。在这些电路中形成了一个捏合环的形成:1)捏合歇斯底里不是熟人的固定器,而2)非线性的存在对于产生这种行为至关重要。最后,验证了数字逻辑电路中的应用程序。
在XXI世纪初发现石墨烯并研究了其有希望的性质[1] [1]逐渐出现,并且仍然相关[2,3]对研究二维(2D)材料,尤其是分层金属辣椒素[4,5]的兴趣。层状金属chalco-天鹅是有前途的材料,可用于微电子,光子学和光伏的材料,因为它们具有半导体,金属,介电特性和拓扑绝缘剂的性能[6]。金属硫化剂的分子层的接近1 nm厚度以及它们之间存在弱的范德华键的存在提供了高机械柔韧性和对变形的抗性,从而产生了在柔性电子中的使用潜力[7,8]。由于物理特性的多样性,可以将分层的金属硫化剂用于各种应用,例如。 g。,MOS 2,BI 2 TE 3和2 SE 3中具有紫外线的高电磁发射吸附系数至接近红外范围[9]。结果,基于金属辣椒剂的范德华异质结构具有在功能设备的设计中使用其电子和光电特性的巨大潜力[10]。在2 SE 3中层层层次,最杰出的代表之一是在其基础上创建太阳能照片,光电探测器和存储设备的2 se 3 [6,11,12]。例如,最近在2 SE 3中至少有八个阶段已经在实验中找到并在理论上进行了预测,而不是许多金属辣椒剂,尤其是在2 SE 3中,其特征是存在具有相同化学计量的多态性修饰(相),但具有不同的结构和电子特性。
摘要:本文旨在研究补偿硅压力传感器的迟滞误差,以提高传感器精度。研究对象是基于MEMS技术的工业领域中的大量程扩散硅压阻式压力传感器。由于传感器的迟滞特性复杂,补偿困难,目前尚未见相关研究的先例。作者分析了迟滞特性的成因和影响因素,并通过实验证明了硅压力传感器满足广义Preisach模型的必要和充分条件。利用传感器的Preisach模型,采用逆广义Preisach模型的补偿算法对迟滞误差进行补偿,实验表明,补偿后迟滞误差明显减小,从而提高了传感器的精度。
技术的进步改变了安全关键任务中的工作动态。如今,许多系统都为操作员提供了通过将子任务转移给自动化技术来减轻复杂任务负担的选项。自适应自动化的目标是消除操作员启动/关闭自动化的需要,而是让子任务的自动控制实时适应操作员的需求。然而,自动化的每一次变化也会产生任务需求转变,这已被证明会对认知工作量指标产生意想不到的影响。自适应自动化系统需要准备好考虑操作员的工作量历史,以动态调整系统如何有效地帮助操作员。本研究的主要目的是研究认知工作量历史对最近经历的认知工作量感知的影响(即滞后)。本研究旨在通过任务控制的自动化交接来引发滞后效应,使用单-双-单任务呈现方法产生低-高-低任务需求序列。设计了两个可变需求计划序列来模拟高水平和低水平的认知需求条件。通过比较第一个和第二个低需求期,可以确定高需求期是否显著影响了第二个低需求期的认知工作量指标,表明存在滞后影响。本研究的结果表明,数据中没有出现滞后效应。多元分析表明,虽然高需求和低需求条件之间存在显著差异,但两个低需求期之间没有出现无法用其他因素解释的显著差异。这表明第二个低需求期没有受到前一个高需求期的显著影响。这些发现表明,滞后影响可能与动态自适应自动化任务卸载和重新加载条件不太相关。鉴于本研究的结果,对于滞后效应,资源耗竭假说或努力调节假说都无法提供显著的支持。需要做更多的工作来检查需求转变不太明显的任务中的滞后效应。
如今,人们对设备的依赖程度比以往任何时候都高。随着智能手机、平板电脑和笔记本电脑等设备的便携性,它们占据了我们日常生活中越来越多的空间和时间。由于可以无缝、即时地访问全球其他人和内容,因此持续、无限和无边界的通信、连接和任务已成为一种生活标准。但这对功率半导体行业有何影响?这些便携式设备依靠电池供电,因此,使用它们的基本前提是拥有充电器或适配器(取决于额定功率)来为它们充电。这就是功率微电子发挥作用的地方。在确定需要充电器/适配器来为我们的(智能)设备的电池充电之后,下一个问题是:我们愿意花多少时间充电?答案很明显:尽可能少。这正是快速充电越来越受欢迎的原因。但只有通过增加充电器/适配器的功率传输能力才能实现快速充电。除了充电时间,充电器的重量也是一个重要的考虑因素(越轻越好,因为我们通常必须随身携带)。这就是为什么需要功率密度更高的充电器/适配器的原因,它们可以在不增加物理尺寸或重量的情况下提供更多功率。
厄尔尼诺 - 南方振荡(ENSO)是最强大的年际气候变异性,具有深远的社会意义后果。许多研究已经调查了未来温室变暖下的ENSO项目的变化,但其对合理缓解行为的反应仍然未知。我们表明,基于CESM1.2模型的28-MERD集成模拟,ENSO海面温度(SST)变异性和相关的全球远程连接模式对二氧化碳(CO 2)的降低表现出强烈的滞后响应(CO 2)模型。与坡道时期相比,在坡道降低时期内,逐渐增加的东部太平洋SST异常方差大幅增加。这种ENSO滞后主要归因于热带太平洋间太平洋间收敛带对CO 2去除的滞后响应,并得到了几个选定的单个单一成员耦合模型对比度项目6(CMIP6)模型模型仿真进一步支持。根据未来缓解途径的细节,ENSO磁滞的存在导致其在温暖的气候下的扩增和长时间影响。