第 45 卷 第 5 期 中 国 电 机 工 程 学 报 Vol.45 No.5 Mar.5, 2025 2025 年 3 月 5 日 Proceedings of the CSEE ©2025 Chin.Soc.for Elec.Eng.2003
近年来,文献中提出了越来越多的被动辐射冷却材料,由于其独特的稳定性,无毒性和可用性,其中有几个示例依赖于使用二氧化硅(SIO 2)。尽管如此,由于其散装声子 - 孔子带,Sio 2在大气透明度窗口内呈现出明显的反射峰(8-13μm),从而导致发射率降低,这构成了挑战,以实现对亚物种的次级辐射辐射冷却的标准。因此,该领域的最新发展专门用于设计Sio 2光子结构的设计,以增加散装SIO 2辐射冷却器的冷却潜力。本综述旨在通过评估其冷却效率及其可扩展性来确定SIO 2辐射发射器的最有效的光子设计和制造策略,从而对各种类型的各种类型的sio 2 radiative Coolers sio(数值和实验)进行了深入的分析。
分子氧与半导体氧化物表面的相互作用在许多技术中起着关键作用。这个主题很难通过实验和理论来实现,这主要是由于多种施加电荷状态,吸附氧气的吸附构和反应通道。在这里,我们使用非接触原子力显微镜(AFM)和密度功能性the-Ory(DFT)的组合来解决金红石TIO 2(110)表面上的吸附O 2,这在金属氧化物的表面化学中提出了长期的挑战。我们表明,通过氧气量终止的化学惰性AFM尖端可以很好地解决吸附物种和底物的氧气sublattice。吸附的O 2分子可以从表面接受一个或两个电子极性,形成超氧或过氧物种。在与应用相关的任何条件下,过氧状态是最优选的。非侵入成像的可能性使我们能够解释与尖端注入电子/孔注入相关的行为,与紫外光的相互作用以及热退火的效果。
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
这项工作描述了用溶胶 - 凝胶过程和控制结晶的高折射率和低散射的二氧化钛膜的精心设计。使用椭圆测量法,分光光度计,X射线衍射和电子显微镜,研究了融合二氧化硅对熔融二氧化硅上的溶胶 - 凝胶加工钛涂层的晶体结构的发展。它表明,可以分别以0.5%和1%的相关光损失为2.5和2.7折射率的解剖酶和金红石涂层,这对于集成光子学的应用是极好的妥协。这些演变与热诱导的传质和热退火期间发生的相变有关,这涉及首先涉及催化酶多向纳米晶体的成核生长和烧结,然后转化为金红石多偏的纳米晶体。同时,通过扩散的烧结来产生微米大小的金红石单晶和单方面的血小板斑点,带有(110)面的(110)面部与表面消耗周围的解剖酶和金红石纳米晶体的面孔,表现为2.73和1.2%的折射率。这些血小板的形成受表面能的控制,并导致光损耗的增加。
材料上的特性。15最近,多层材料在表面工程社区中引起了广泛的关注,复合电极的制造也广泛用于LM电极处理。这还涉及增强电极材料的表面和界面,例如,减少金属颗粒的大小,不合适的多孔或分层结构,并与各种纳米颗粒进行修改或功能化表面(例如,,金属,金属氧化物,碳材料和离子/电子导电聚合物)。16 - 19虽然一项重要的研究集中在界面模式cation在改善金属化lms的能量存储和电性能中的作用,但它在自我修复特性方面已被很大程度上忽略了。由于其出色的电绝缘层和高导热率,可以将金属氧化物连接到聚丙烯LMS的表面上,以通过蒸气沉积形成复合的绝缘培养基。该方法不仅在适度地增加了复合lms的相对介电常数,而且在显着增强了电容器核心的热有效性方面。20,21尽管热量的快速耗散是由于电容器的介电损失或自我修复而产生的,但据信复合LMS可以防止在自我控制点附近介电lm的层间粘附,从而在自我控制过程中发挥隔离功能。22,23
神经形态计算最近已成为传统的von Neumann计算机范式的潜在替代方法,该范式由于其建筑瓶颈而固有地受到限制。因此,需要新的人工组件和用于脑启发的计算硬件实现的架构。双极模拟熟悉设备,其电阻(或电导)可以连续调节(作为突触重量),是人工突触应用的潜在候选者。在这项工作中,混合离子电子导电氧化物(La 2 NiO 4+δ,L2NO4)与TIN和PT电极结合使用。TIN/L2NO4/PT设备显示双极电阻开关,以及用于集合和复位过程的逐渐过渡。电阻(电导)可以通过脉冲幅度和持续时间逐渐调节,显示出良好的数据保留特征。通过实验测量电阻变化和总应用脉冲持续时间之间的线性关系。此外,突触抑郁和增强特征是生物共生的重要功能之一,是为这些设备人为复制的,然后在尖峰神经网络环境中进行了建模并成功测试。这些结果表明使用TIN/L2NO4/PT回忆设备作为神经形态计算中的长期人造突触的适用性。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
难以区分的混淆(IO)已经取得了显着的理论进步,但是由于其高复杂性和效率低下,它仍然不切实际。最近的IO方案中的一种常见瓶颈是依赖自动化技术从功能加密(Fe)到IO中的依赖,该技术需要递归地调用每个输入位的Fe加密算法,这是为实用IO方案的重要障碍。在这项工作中,我们提出了钻石IO,这是一种新的基于晶格的IO结构,它用轻量级的矩阵操作代替了昂贵的递归加密过程。我们的构造在学习中被证明是安全的(LWE)和回避的LWE假设,以及我们在伪甲骨文模型中的新假设(All-Product LWE)。通过利用Agrawal等人引入的伪随机功能的Fe方案。(eprint'24)在非黑色盒子中,我们消除了对先前的Fe-io bootstrapping技术的依赖,从而显着降低了复杂性。剩下的挑战是将我们的新假设减少到LWE等标准的标准,进一步促进了实用和合理的IO构造的目标。