主要活动:管理服务对 MD 平台的访问,包括合同问题。选择过程将优先考虑开发用于罕见疾病儿科心脏病学的 MD 的服务请求。在这个组中,我们已经确定了 3 个服务请求(分别为案例研究 1-3、WP 3-5)。
收敛转录组特征:通过综合血液和神经发育分析自闭症谱系障碍(ASD)识别ASD遗传途径,影响了美国54名儿童中的1个,有大量证据支持遗传基础;但是,将发育遗传改变与持续的外围生物标志物联系起来仍然是一个重大挑战。我们的研究采用了双平台方法,结合了来自ASD个体的外周血样本和神经型对照的RNA测序以及对IPSC衍生和外围血液转录组学的荟萃分析。对于生物标志物发现,我们实施了高通量RNA测序,然后在独立队列中进行了qPCR验证,而我们的发育转录组分析则利用了生物信息学管道,并具有严格的质量控制措施,包括FASTQC/MULTIQC评估,恒星对齐,特征计数和特征计数量化。发布的数据表明在几种基因类别中的明显失调:突触功能基因(Syn1,PSD95,SYP,NR2B)影响神经传递;细胞粘附分子(PCDHA1,PCDHHA6,CNTN3)破坏神经连通性;离子通道和受体(CACNA2D3,SCN9A,GRIK2)改变了神经元兴奋性;和神经发育基因(ERBB4,NTNG1,TSHZ3)影响关键的神经发育过程。通过将“大数据”分析方法与持续的临床计划配对,我们的研究计划有可能提高我们对与发育改变相关的分子途径的理解,这可能促进了早期的ASD诊断并揭示了新的治疗靶标。
•探测器通常观察到闪烁光,电离,振动•仅在某些能量阈值之上可用的闪烁和电离•在弹性核后坐力,闪烁和电离中,闪烁和离子化是由于后退核与邻近的核之间碰撞而导致的,而在MIGDAL中,后退的原子ATOM ATOM ATOM ATOM ATMED/IRISID/IRISINED本身。这对于较小的能量是可能的
migdal效应[1],其中核散射在理论上诱导了原子,分子或固体中的电子激发,但从未在实验中得出结论。主要的挑战是与弹性散射相比非常小的速率,结合了将原发性米格达事件与普通弹性核削减后的二次电子激发或电离的难度。已经提出了Migdal效应来搜索子GEV暗物质,以此作为一种通过电子激发信号逃避核后坐力阈值的方法[2-16],但首先必须使用标准模型探针观察到这种效果以校准它[17-21]。在本文中,是出于与暗物质检测相关的分子migdal效应的最新发展的动机[22],我们提出了一个新概念来测量Migdal效应。低能(〜100 eV)中子束用于通过分子气中的核散射(例如碳一氧化碳(CO))诱导结合的Migdal转变,概率约为每个中子散射事件,导致紫外线的发射和可见光子的发射
2022-now Generative Methods for Computer Graphics , DTU , two lectures, MSc Responsible AI , DTU , BSc, MSc Creating Digital Visual Experiences , DTU , BSc, MSc Geometric Data Analysis and Processing , DTU , one lecture, MSc 2022-2023 Introduction to Programming and Data Structures , DTU , BSc (430 studens) 2020-2022 Babysitting Neural Nets , CSEM,深度学习入职课程2014-2018计算摄影,伯尔尼大学和EPFL,MSC
