磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。
图 2. Frak 等人(2001 年)使用的实验范例说明。上图为显性动作,参与者被要求用拇指和食指抓住一个装满水的圆柱形容器,将水倒入容器中。下图为隐性动作。左图:计算机显示器上容器(即圆盘)的示意图。圆盘上的两条小线表示在想象动作期间食指和拇指应放置的位置。右图:操纵对立轴从 -22° 到 +56°。
我们展示并分享了一个大型数据库,其中包含来自 87 名人类参与者的脑电信号,这些信号是在一天的脑机接口 (BCI) 实验中收集的,分为 3 个数据集 (A、B 和 C),所有数据集均使用相同的协议记录:右手和左手运动想象 (MI)。每个会话包含 240 次试验(每个类别 120 次),代表超过 20,800 次试验,或大约 70 小时的记录时间。它包括相关 BCI 用户的表现、有关人口统计、个性特征以及一些认知特征的详细信息以及实验说明和代码(在开源平台 OpenViBE 中执行)。这样的数据库可用于各种研究,包括但不限于:(1) 研究 BCI 用户的个人资料与其 BCI 表现之间的关系,(2) 研究 EEG 信号属性如何因不同用户的个人资料和 MI 任务而变化,(3) 使用大量参与者设计跨用户 BCI 机器学习算法或 (4) 将用户的个人资料信息纳入 EEG 信号分类算法的设计中。
材料和方法 这项回顾性单中心研究考虑纳入 2019 年 11 月至 2021 年 3 月在 Gustave Roussy 癌症园区(法国维尔瑞夫)获取的共 250 张多参数脑 MRI。定义了独立的训练(107 例,年龄 55 岁±14 岁,58 名女性)和测试(79 例,年龄 59 岁±14 岁,41 名女性)样本。患者患有神经胶质瘤、脑转移、脑膜瘤或无增强病变。在所有病例中均获取了具有可变翻转角的梯度回波和涡轮自旋回波对比后 T1 序列。对于形成训练样本的病例,还获取了使用 0.025 mmol/kg 造影剂注射的“低剂量”对比后梯度回波 T1 图像。以标准剂量 T1 MRI 为参考,训练了一个深度神经网络来合成增强低剂量 T1 采集。训练完成后,对比增强网络用于处理测试梯度回波 T1 图像。然后由两名经验丰富的神经放射科医生进行读片,以评估原始和处理后的 T1 MRI 序列的对比增强和病变检测性能,以快速自旋回波序列为参考。结果对于增强病变的病例,处理后图像的对比噪声比(44.5 比 9.1 和 16.8,p<.001)、病变与脑组织比(1.66 比 1.31 和 1.44,p<.001)和对比增强百分比(112.4% 比 85.6% 和 92.2%,p<.001)均优于原始梯度回波和参考快速自旋回波 T1 序列。两位读者都更喜欢处理后的 T1 的整体图像质量(平均评分为 3.4/4 比 2.7/4,p<.001)。最后,对于大于 10 毫米的病变,所提出的处理方法将梯度回波 T1 MRI 的平均灵敏度从 88% 提高到 96%(p=.008*),而误检率则没有差异(两种情况下均为 0.02/例,p>.99)。考虑所有大于 5 毫米的病变时观察到了相同的效果:灵敏度从 70% 提高到 85%(p<.001*),而误检率保持相似(0.04/例 vs 0.06/例,p=.48)。如果包括所有病变,无论其大小如何,原始和处理后的 T1 图像的灵敏度分别为 59% 和 75%(p<.001*),相应的误检率为 0.05/例和 0.14/例(p=.06)。
医学图像计算 (MIC) 致力于通过计算方法分析医学成像数据并通过实验对其进行评估。因此,它是一门实验科学。可重复性是所有实验科学进步的基石。与许多其他领域一样,人们主要担心 MIC 的可重复性不令人满意。然而,可重复性不是一个单一的概念,而是一个范围,研究人员经常误解它。此外,尽管已经采取了一些措施来促进 MIC 社区的可重复性,但目前尚不清楚这些措施是否有效。本章的目标有三个:i) 为读者提供 MIC 可重复性的必要概念;ii) 描述已实施的措施并评估其中一些措施;iii) 概述可能采取的一些新行动。本章首先介绍一个概念框架,该框架区分了不同类型的可重复性以及可重复研究的主要组成部分。然后,介绍 MICCAI(医学图像计算)当前如何评估可重复性
上下文。恒星磁盘截断(也称为星系边缘)是银河大小的关键指标,由气体密度阈值的恒星形成的径向位置确定。该阈值本质上标志着星系中发光物质的边界。准确测量数百万星系的星系大小对于理解在宇宙时间内推动星系演变的物理过程至关重要。目标。我们旨在探索段的任何模型(SAM)的潜力,即设计用于图像分割的基础模型,以自动识别星系图像中的磁盘截断。通过欧几里得广泛的调查,我们的目标是提供大量的数据集,我们的目标是评估SAM以完全自动化的方式测量星系大小的能力。方法。SAM被应用于1,047个磁盘样星系的标记数据集,其中M ∗> 10 10m⊙在红移至z〜1时,来自哈勃太空望远镜(HST)烛台。我们分别使用F160W(H -band),F125W(J -band)和F814W + F606W(I -Band + v -band)HST HST HST滤镜来创建复合RGB图像“欧盟化” HST Galaxy图像。使用这些处理的图像作为SAM的输入,我们在输入数据的不同配置下检索了每个星系图像的各种截断掩码。结果。我们发现了由SAM确定的星系大小与手动测量的星系大小之间的一致性(即,通过在星系光谱中使用恒星磁盘边缘的径向位置),平均偏差约为3%。当排除问题案例时,此错误将减少到约1%。结论。我们的结果突出了SAM以自动化方式在大型数据集上检测磁盘截断和测量星系尺寸的强大潜力。SAM表现良好,而无需大量图像预处理,标记为截断的训练数据集(仅用于验证),微调或其他特定于域特异性适应(例如传输学习)。
是他诞辰一百周年。与其他几位东欧艺术家一样,他与理查德·德马科合作的作品(在 1972 年、1973 年和 1976 年的爱丁堡艺术节上)确立了他的国际声誉。伴随这部电影的还有六场新拍摄的表演,由三位波兰艺术家和三位苏格兰艺术家在爱丁堡拍摄,他们分别是 Zuzanna Janin、Karolina Kubik、Norbert Delman、Steven Anderson、Jedrzej Cichosz 和 Peter McRae。今天下午 4 点,苏格兰国家美术馆 The Mound 的 Hawthornden 演讲厅将举行《水母鸡》的公众预演。(免费,但建议预订 - 发送电子邮件至 info@royalscottishacademy.org);从 7 月 25 日星期六开始,它将在 The Mound 的苏格兰皇家学院 Finlay 厅上映。免费入场;截止日期为 2015 年 9 月 5 日。
由于神经外科手术期间大脑会变形,因此可以使用术中成像来可视化大脑结构的实际位置。这些图像用于图像引导导航以及确定切除是否完整并定位剩余的肿瘤组织。术中超声 (iUS) 是一种便捷的模式,采集时间短。然而,由于噪音和伪影,iUS 图像难以解释。特别是,肿瘤组织很难与健康组织区分开来,并且很难在 iUS 图像中划定肿瘤的界限。在本文中,我们提出了一种使用 2-D 和 3-D U-Net 在 iUS 图像中自动分割低级别脑肿瘤的方法。我们对网络进行了三重训练,每重有 12 个训练案例和 5 个测试案例。获得的结果很有希望,中位 Dice 得分为 0.72。估计分割和真实分割之间的体积差异与评分者内部体积差异相似。虽然这些结果是初步的,但它们表明深度学习方法可以成功应用于术中图像中的肿瘤分割。
近年来,基于运动想象 (MI) 的脑电图 (EEG) 在脑机接口 (BCI) 技术中得到了显著的关注,特别用于瘫痪患者的康复。但 MI EEG 的低信噪比使其难以有效解码,阻碍了 BCI 的发展。本文提出了一种基于注意的多尺度 EEGNet (AMEEGNet) 方法来提高 MI-EEG 的解码性能。首先,采用三个并行的融合传输方法的 EEGNets 从多个尺度提取 EEG 数据的高质量时空特征。然后,高效通道注意 (ECA) 模块通过一种加权关键通道的轻量级方法增强了对更具辨别性的空间特征的获取。实验结果表明,所提出的模型在 BCI-2a、2b 和 HGD 数据集上的解码准确率分别为 81.17%、89.83% 和 95.49%。结果表明,所提出的 AMEEGNet 有效地解码了时空特征,为 MI-EEG 解码提供了新的视角,并推动了未来的 BCI 应用。
在运动中,无论是专业运动还是业余运动,发生意外导致受伤或肌肉骨骼病变的风险都很高(例如肌肉撕裂、骨折、扭伤)。这些事件可能会导致训练停止,或者在某些情况下导致长时间的身体不活动(例如卧床休息和/或固定不动)。即使有必要,这种身体活动的减少或活动减少在考虑运动练习和康复时也会成问题。事实上,除了对身体(例如易疲劳)和心理健康(例如抑郁)的有害影响外,活动减少还会对运动功能产生不利影响,降低运动表现[1]。因此,康复方案必须