摘要 - 本文提出了一种掩盖优化方法,用于使用图像介入来提高对象去除的质量。在许多现实情况下,许多介绍方法都经过一组随机掩码的训练,但在许多现实的情况下,indpainting的目标可能是一个对象,例如一个人。训练和推理图像中掩模之间的域间隙增加了介入任务的难度。在我们的方法中,通过训练通过分割提取的对象掩码训练介入网络来解决此域间隙,并且在推理步骤中也使用了此类对象掩码。此外,为了优化对象蒙版的介入,分割网络已连接到indpainting网络,并端到端训练以提高镶嵌性能。通过我们的面具扩展损失实现大型面具和小型面具之间的权衡,这种端到端训练的效果进一步增强了。实验结果证明了我们方法使用图像介入的方法去除对象的有效性。索引术语 - 图像inpainting,对象分割,对象删除
摘要。在计算机视觉中,众所周知,缺乏数据会损害模型性能。在这项研究中,我们应对加强数据集多样性问题的挑战,以使各种下游任务(例如对象检测和实例segmentation)受益。我们通过利用生成模型中的进步,特别是文本对图像合成技术(如稳定扩散)提出了一种简单而有效的数据增强方法。我们的方法着重于标记的真实图像的变化,利用生成对象和背景增强通过indpainting来增强现有的培训数据,而无需其他注释。我们发现,尤其是背景增强,显着提高了模型的鲁棒性和泛化能力。我们还调查了如何提示和掩盖以确保生成的内容符合现有注释。通过对可可数据集的全面评估和其他几个关键对象检测基准测试,我们的增强技术的功效得到了验证,这表明在不同情况下,模型性能没有提高。这种方法为数据集启用的挑战提供了有希望的解决方案,这有助于开发更准确,更健壮的计算机视觉模型。