在法律规定的某些条件下,图书馆和档案馆有权提供复印件或其他复制品。这些规定条件之一是,复印件或复制品不得“用于除私人学习、学术或研究以外的任何目的”。如果用户请求复印件或复制品,或随后将其用于超出“合理使用”范围的目的,则该用户可能要承担侵犯版权的责任,
1. 结合我们从之前两个原型中获得的知识,构建一个可展开的自调准 TIR 空间望远镜作为 12U 有效载荷(UCAM/S4)2. 包括视角和大面积覆盖,以从无人机数据创建高度逼真的模拟 TIR 空间数据(UCAM/S4)3. 继续我们的利益相关者参与计划(UCAM/S4)4. 开发工具来稳健地评估地球上任何建筑物的能量输出(UCAM)5. 设计一个系统原型以实现 TIR 条带测绘(S4)6. 在现有数据分发平台上开发测试模块,使 TIR 红外图像能够轻松地与可见光图像叠加(Open Cosmos Ltd)7. 专门为获得专利的自调准望远镜开发金刚石车削自由曲面光学器件(Durham Precision Optics - 新合作伙伴)。
另一种策略是使用时间分辨 NIRS (trNIRS) 来增强测量的深度灵敏度,该方法使用皮秒光脉冲和快速探测器来记录漫反射光子的飞行时间 (DTOF) 分布。9 由于 DTOF 包含时间和强度信息,因此可以分辨不同深度的吸收变化,因为光子到达时间与路径长度成正比。最流行的深度增强方法基于计算 DTOF 的统计矩 10、11 或在时间窗口/门内积分光子计数。12、13 在这两种情况下,目标都是关注晚到达的光子,因为它们最有可能探测到大脑。先前使用分层组织模拟幻影、动物模型和人类受试者的研究表明,与传统的 CW NIRS 相比,trNIRS 对脑血流动力学具有更高的灵敏度。13 – 17
设置FNIRS实验时,将OPTODES放在头皮上,可以将其限制在源(发射器)和检测器(接收器)中,具体取决于其功能。从源发出的光通过脑外和脑组织传播到几厘米,在光线到达检测器之前,一些光子被分散并吸收。5因此,FNIRS的空间分辨率在5至10 mm 4的范围内取决于源 - 检测器对(或“通道”)的排列在头皮上。6源对与检测器对之间的距离以及它们之间的解剖组织决定了光笔的深度以及对基础皮层的敏感性。1因此,fnirs信号的质量在optode布局之间可能会有巨大不同。optode布局的这种效果与需要稀疏的optode布局(例如大脑 - 计算机接口(BCIS))的应用特别相关。bcis为患有严重运动障碍的临床人群提供了一种替代手段,可以通过使用户能够在没有电动机输出的情况下通过大脑活动发送命令。7,8 fnirs是实施BCI的有前途的选择,因为其可移植性,安全性和相对较低的成本。9,10
2.32 Trello 示例....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................34
另一种策略是使用时间分辨的NIR(TRNIRS)增强测量的深度灵敏度,该时间使用时间脉冲(TRNIRS),该nirs使用皮秒脉冲脉冲和快速检测器来记录扩散反射的光子的飞行时间(DTOF)分布。9作为DTOF包含时间和强度信息,由于光子到达时间与路径长度成正比,因此可以解决不同深度的吸收变化。最流行的深度增强方法是基于计算DTOF 10、11的统计矩或在时间Windows/门内集成光子计数的统计矩。12,13在这两种情况下,目标是将重点放在晚期的光子上,因为它们具有询问大脑的最大可能性。先前使用层状组织模拟幻像,动物模型和人类受试者的研究表明,与常规的CW NIR相比,TRNIRS对脑血动力学的敏感性具有较高的敏感性。13 - 17
目前,临床HIBD诊断主要依赖两个方面。These include clinical characterization, which specifically refers to abnormal changes in consciousness, original reflec- tion (there are some congenital reflexes in newborns, which reflect whether the body and nervous system function of the newborn is normal), and muscle tension, 6 as well as detection of HIBD- induced lesions using ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and other medical imaging技术。这些古典技术具有自己的优势和局限性。超声已经逐渐优化了大脑结构扫描的分辨率,但不足以监测功能性血流动力学的能力。ct涉及一定的辐射程度,未成熟的脑组织具有单场耐受性。MRI具有强大的空间分辨率,可以准确区分局部脑血流的灌注水平。但是,由于临床不稳定和/或治疗性干预所需的医疗设备,对新生儿的方便且连续的床边监测有新兴的需求。通过功能近红外光谱(FNIRS)静止状态脑网络分析来满足需求是一项积极的努力。fnirs是一种相对较新的非侵入性脑成像技术,由于其对参与者的友好性,引起了大脑研究人员的极大关注。7,8更重要的是,FNIRS在HIBD诊断中的主要优势是支持便携式和连续的床边监测。9,10fnirs允许我们在几分钟内获得新生儿高质量的数据集。值得注意的是,可以在不需要执行任务或其他辅助试剂(镇静剂)的情况下与婴儿一起以安静或睡眠状态收集数据。床边的短期准备和检测期意味着儿科医生可以在任何关键点反复记录数据。此外,与CT或正电子发射CT相比,FNIRS避免了辐射对新生儿的影响。大脑网络分析已广泛用于评估大脑功能。人脑是具有许多本地或全球拓扑特征的高度复杂的网络系统。
胶体半导体量子点/石墨烯范德华 (vdW) 异质结利用量子点 (QDs) 增强的光物质相互作用和光谱稳定性以及石墨烯中卓越的电荷迁移率,为增益或外部量子效率高达 10 10 的非制冷红外光电探测器提供了一种有前途的替代方案。在这些 QD/石墨烯范德华异质结构中,QD/石墨烯界面在控制光电过程(包括激子解离、电荷注入和传输)方面起着关键作用。具体而言,范德华界面处的电荷陷阱会增加噪声、降低响应度和响应速度。本文重点介绍了我们在设计范德华异质结界面以实现更高效的电荷转移、从而获得更高的光响应度、D* 和响应速度方面的最新进展。这些结果表明范德华异质结界面工程在 QD/石墨烯光电探测器中的重要性,这可能为低成本、可印刷和灵活的红外探测器和成像系统提供有前途的途径。