系统灵敏度 ................................................................................................................ 13 重要火灾灵敏度注意事项 .............................................................................. 13 3、5 和 10 秒的时间延迟设置 .............................................................................. 13 灵敏度设置 ............................................................................................................ 13 DIP 开关访问 ...................................................................................................... 13 继电器设置(仅限 IR3S-R) ...................................................................................... 14 线圈状态设置 ...................................................................................................... 14 继电器触点设置 ...................................................................................................... 14 M ODBUS RTU(IR3S-D 和 AD) ............................................................................. 15 安装 Phoenix PC 设置软件 ................................................................................ 15 Modbus 设置 ............................................................................................................. 16
摘要:低成本、易于集成的硅 (Si) 光子学光电探测器 (PD) 仍然是光子集成电路 (PIC) 的瓶颈,特别是对于 1.8 μ m 以上的波长。多层铂硒化物 (PtSe 2 ) 是一种半金属二维 (2D) 材料,可以在 450°C 以下合成。我们通过在 Si 波导上保形生长直接集成基于 PtSe 2 的 PD。PD 在 1550 nm 波长下工作,最大响应度为 11 mA/W,响应时间低于 8.4 μ s。1.25 至 28 μ m 波长范围内的傅里叶变换红外光谱表明 PtSe 2 适用于远至红外波长范围的 PD。我们通过直接生长集成的 PtSe 2 PD 优于通过标准 2D 层转移制造的 PtSe 2 PD。红外响应性、化学稳定性、低温下选择性和保形生长以及高载流子迁移率的潜力相结合,使 PtSe 2 成为光电子和 PIC 的有吸引力的 2D 材料。关键词:铂硒化物、光电探测器、硅光子学、二维材料、红外 ■ 简介
某些应用的适用性声明基于 KEMET Electronics Corporation (“KEMET”) 对此类应用的典型工作条件的了解,但不构成(KEMET 明确否认)有关特定客户应用或用途适用性的任何保证。该信息仅供具有必要经验和能力来确定适合其应用的正确产品的客户使用。从该信息推断出的任何技术建议或 KEMET 就 KEMET 产品的使用提供的其他技术建议均免费提供,KEMET 对给出的建议或获得的结果不承担任何义务或责任。
如今,红外热仪越来越流行,并在各个应用领域中使用,例如环境保护,土木工程,医学,空间,军事和科学。这是半导体技术取得重大进展的结果,导致低噪声,高度积分和节能的集成电路。应用领域似乎是无限的,因为在高于0k≈–273°C的温度下的每个物体都会发出电磁辐射[1-4,7,8]。通常观察到的图像在可见的光谱中被观察。通常,更有趣和更有用的是有关电磁辐射的“无形”带中获得的对象的其他信息[3,4]。这样的辐射是红色辐射,它构成了电势波长1 与热成像相机的检测器不同,人眼本身无法检测到,更不用说测量辐射的波长了。 红外探测器是热成像摄像头的主要元素。 提出的项目使用由无定形硅(A-SI)制成的LWIR光谱范围内运行的微量光度检测器。 目前,还有其他可用的检测器。 在许多情况下,在低温下,有光子检测器在低温下运行[2]。 直到2000年,只生产了用液氮冷却冷却的探测器,毛发系统和stirling泵。 在热ima- 中与热成像相机的检测器不同,人眼本身无法检测到,更不用说测量辐射的波长了。红外探测器是热成像摄像头的主要元素。提出的项目使用由无定形硅(A-SI)制成的LWIR光谱范围内运行的微量光度检测器。目前,还有其他可用的检测器。在许多情况下,在低温下,有光子检测器在低温下运行[2]。直到2000年,只生产了用液氮冷却冷却的探测器,毛发系统和stirling泵。在热ima-
致密组织,即使由于激素变化,热成像也不会受到影响。热成像单独使用时的灵敏度为 83%,与 MRI 结合时的灵敏度为 95%。这也具有较高的假阳性率和假阴性率,但可以通过使用增强方法进一步降低。脑热成像的工作原理是发现大脑表面温度的升高。该方法使用各种技术来分析大脑,如颜色分析、不对称分析、人工神经网络、特征提取、数据挖掘技术、分割方法、顺序特征选择技术等。使用热成像检测脑癌始于筛查脑部并分析获得热图的热变化。观察图像,然后按照有序序列开始进一步处理,如预处理、分割、特征提取、分类和后处理。
定位研究 20 – 22 旨在识别大脑对特定刺激的激活模式,以及连接研究(功能性或有效) ,其重点是研究大脑各区域之间的功能相互作用,无论是在大脑处于休息状态还是在执行特定任务时。 23 – 27 然而,现在众所周知,大脑是高度动态的 28 – 32 因此,为了更全面地了解其功能,需要能够提取大脑记录中的时间信息的方法。与空间域相比,考虑时间域进行分析的 fNIRS 研究数量要少得多。 33 – 40 例如,在参考文献 33 中,通过应用 Higuchi 分形维数算法 41 表明 fNIRS 信号具有高度复杂度。将小波变换应用于 fNIRS 信号,并表明小波系数可用于训练分类器。在参考文献38–40中,熵已被用来评估患者群体(如患有阿尔茨海默病、注意力缺陷多动障碍和脑外伤的患者)中 fNIRS 信号的复杂性,表明它携带的信息可能与疾病有关。所有这些研究表明,在 fNIRS 信号的复杂特征中存在与潜在大脑活动相关的信息。在本文中,我们利用可视性图(VG)提出了一种揭示 fNIRS 时间序列分形特性的方法。VG 是一种最近引入的方法,它将时间序列映射到图形(称为 VG)。正如将要讨论的,构建图的拓扑属性与时间序列的分形和复杂性有关。42、43 与传统的分形分析方法相比,42 VG 在计算上不太复杂,并且已经用于各种研究。 44 – 49 例如,江等人利用心电图表明,采用 VG 分析可以揭示由调解训练引起的动态变化,表现为规律的心跳,这与自主神经系统的调整密切相关。44 朱等人将基于 VG 的方法应用于酗酒识别,表明该方法有望将酗酒者与控制饮酒者区分开来。48 在参考文献 47 中,结果表明,将 VG 应用于脑电图 (EEG) 信号可以提供区分自闭症儿童和非自闭症儿童的特征。在参考文献 49 中,我们已经表明,通过 VG 提取的 GCaMP6 小鼠钙记录的时间特征带有可用于解码行为的鉴别信息。这里需要注意的是,VG 与功能连接研究中常用的基于图论的方法之间的区别。50 , 51 在典型的功能连接研究中,图是在空间域中构建的,即图中的节点对应于通道或体素的位置,并且两个节点之间的链接基于与两个节点相关的时间序列的统计相似性形成,通过相关性等度量来量化。另一方面,正如将在第 2 节中讨论的那样,在 VG 中,节点对应于时间序列中的时间点,并且链接基于时间点之间的自然可见性形成(图 1)。一旦为每个时间序列形成图,就可以提取图度量来表示时间序列的不同属性。在本文中,我们使用 VG 研究两种条件下 fNIRS 时间序列的分形性:当大脑处于休息状态时和当大脑从事任务时。在两种静息状态条件和两种任务条件下记录了 9 名健康男性受试者的 fNIRS 时间序列。从每个时间序列为每个通道和每种条件构建 VG。然后提取可视性图的无标度性 (PSVG) 的功率并在不同条件下进行比较。据我们所知,这是第一项使用 VG 揭示 fNIRS 记录时间序列时间特征的研究,证明了其在识别 fNIRS 记录中的特征方面的可行性,这些特征可用于获得有关大脑功能的新见解。本文的其余部分组织如下。第 2 节介绍了本研究中用于分析的方法。实验设置的详细信息在第 3 节中给出。第 4 节介绍了结果,最后,在第 5 节中提供了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。
图1. 结构示意图及在正入射光下模拟得到的吸收光谱。(a)红外探测器的探测机理。目标的红外辐射透过大气后被红外探测器捕获。(b)双层超薄膜示意图及GST在不同状态之间的转变机制。当温度超过结晶温度𝑇𝑇 𝑐𝑐时,GST会逐渐由非晶态转变为结晶态,而一旦温度超过熔点𝑇𝑇 𝑚𝑚后,经过快速退火,GST又可以变回非晶态。(c)光谱椭偏仪测得的红外波段不同状态下GST的相对介电常数。(d)双相态超薄膜对正入射光的吸收光谱及大气透过光谱。
Q11。MCT 如何促进主动成像?在主动成像中,系统用人眼安全的光子爆发淹没感兴趣的场景,然后使探测器仅在预期激光照射目标反射时“看到”能量。来自目标前景和背景的混乱反射被忽略,因为它们到达得太早或太晚,并且生成的图像仅包含高对比度目标信息。
©2022 Taylor&Francis Group,LLC。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1080/05704928.2022.2156527获得。
摘要:空气中的红外热扫描仪可用于检测裂缝和洞穴开口,但仅在某些条件下。首先,空隙内的温度必须与外部条件显着不同。其次,必须存在某种机制将这种热差异带到可以被扫描仪检测到的表面。此外,必须确定其他事件是否影响这种机制。在裂缝的情况下,传导和对流都在改变裂缝上的雪桥表面温度方面的作用。对于洞穴,对流是带来温度改变的机制。对流与呼吸周期有关,而呼吸周期又是由气压压力变化引起的。可以从内部温度,外部温度和大气压力的地面测量中选择飞行时间,从而提供最有利的情况。洞穴信号更多是一个问题,因为它经常被其他事件引起的相似信号所包围。为格陵兰岛的裂隙场和波多黎各的洞穴系统提供了结果。