新版本中的大部分更改旨在使本文与 Hedgge 等人和 Kuzmenko 等人已经发表的文章保持关联,这两位作者描述了来自其他丁酸梭菌菌株的类似 pAgo,其中只有一篇文章(Hedgge 等人)在发送本文的第一个版本时作为未修改的文章发布。基本上,在得知 Kuzmenko 等人的结果后,我们重新考虑了 CbcAgo 与 CbcAgo 的热稳定性水平的差异,他们也报告了他们的标记版本的 CbAgo 具有更高的热稳定性。其他细微更改与图表编号的正确对齐或字体大小的增加有关,以便于阅读。讨论部分也进行了修改,以对相应部分中包含的审阅者意见提供适当的答复。
通过退火通过退火,将共沉淀的无定形前体退火在两个阶段中合成了新的(Zn,mg,ni,fe,cd)fe 2 o 4高熵铁素体,平均水晶尺寸为11.8 nm。介电光谱证实,电导率和极化过程与铁素体结构中电子的迁移率有关。得出的结论是,高频复合物介电介电常数以及复杂的磁渗透性都是强烈的温度和频率依赖性的。AC电导率与电子的量子机械隧穿有关,并且与Fe 2 +和Fe 3 +离子之间的电荷载体转移有关。此外,确定微波吸收特性。最佳的微波吸收特性已在厚度为0.8–1 cm的层的频率范围1.9至2.1 GHz中得到证实。对于此范围,反射损失(RL)低于-25 dB,屏蔽效率(SE)低于-50 dB。
复合材料的理论和实验结果分别从经典和最新角度进行了介绍,从而阐明了测试复合材料的屏蔽效果。理论考虑还涉及两种类型的夹杂物,即导电颗粒(金属颗粒、纤维和薄片)和有损非金属夹杂物。在第一种情况下,主体-夹杂物系统指的是争论性相反的成分,而在后一种情况下,它只是一种介电-介电混合物。
研究生院 爱荷华大学 爱荷华州爱荷华城 硕士论文批准证书 兹证明 Eric Christopher Frick 的硕士论文已获得审查委员会的批准,符合 2015 年 5 月毕业典礼生物医学工程理学硕士学位论文要求。论文委员会: Salam Rahmatalla,论文指导老师 David Wilder Tim Marler Nicole Grosland Edwin Dove
完整的实验装置如图 S1 所示。超导量子比特遵循文献 [1] 中描述的“3D transmon”设计。单个铝制约瑟夫森结与蓝宝石衬底上的两个 0.4 x 1 毫米天线相连,嵌入空的铝块腔中,固定在稀释制冷机的 20 mK 基温下。transmon 芯片采用电子束光刻、双角蒸发和氧化工艺制成隧道结。光谱测量得出量子比特频率 ν q = 5 . 19 GHz,与下一个跃迁相差非谐性 α/ 2 π = 160 MHz。测得的弛豫时间为 T 1 = 16 µ s,拉姆齐时间为 T 2 = 10 . 5 µ s。读出和驱动脉冲由微波发生器产生的两个连续微波音调的单边带调制产生,微波发生器分别设置在 ν c 0 + 62 . 5 MHz 和 ν q + 62 . 5 MHz,其中 ν c 0 = 7 . 74 GHz 是高功率下的腔体频率(图 S3.a)。调制是通过将这些连续波与 62.5 MHz 的脉冲正弦信号混合来完成的,后者由 4 通道泰克任意波形发生器的两个不同通道合成。所有源均由原子钟同步。两个脉冲合并并通过输入线发送到腔体的弱耦合输入端口,输入线在稀释制冷机的各个阶段用低温衰减器进行滤波和衰减,确保进入设备的热激发可以忽略不计。在静止阶段 (850 mK) 使用商用 (来自 K&L) 低通净化滤波器,截止频率为 12 GHz,而在基准温度下插入自制低通滤波器,该滤波器由封闭在装有 Eccosorb 的红外密封盒中的微带线组成。请注意,图 S1 中表示为“反射探针”的类似线已用于现场估计腔体输入和输出耦合率 Γ a,b = γ a,b
D.1 简介……………………………………………………... D-1 D.2 测量系统………………………………………………. D-1 D.3 BPL 测量…………………………………………………... D-3 D.3.1 BPL 发射测量的背景……………………… D-3 D.3.2 沿通电电力线的 BPL 测量………. D-10 D.3.3 远离带电电力线的 BPL 测量... D-23 D.3.4 使用各种检测器测量 BPL ……………….. D-37 D.3.5 不同天线高度的 BPL 测量 ……………….. D-41 D.3.6 BPL APD 的测量 ………………………………………… D-47 D.4 幅度概率分布的背景 …………... D-50 D.5 使用噪声二极管进行增益和噪声系数校准 .................... D-59 附录 E BPL 建模输出 E.1 简介 …………………………………………………………... E-1 E.2 表格和 NEC 图 ………………………………………………... E-1 附录 F NTIA 第 2 阶段研究 BPL 部署模型 F.1 简介 ……………………………………………………... F-1 F.2 街区部署模型 …………………………………... F-1 F.3 天线覆盖区域部署模型 ………………………… F-3 F.4 区域部署模型 ………………………………………… F-4 F.4.1 区域部署模型描述 …………………………… F-5 F.4.2 家庭密度和分布 ……………………………... F-5 F.4.3 BPL 设备的密度和分布 …………………………... F-6 F.4.4 其他因素……………………………………………………. F-6 F.4.5 区域模型输出 ………………………………………………. F-9 第一卷 致谢 ………………………………………………………………........ iii 前言 …………………………………………………………………………... iv 执行摘要 ……………………………………………………………………........ v 目录 …………………………………………………………………… vi
干扰预测的一个基本问题(实际上所有对流层预测程序都存在这个问题)是难以提供一套统一的、一致的实用方法,涵盖广泛的距离和时间百分比;即对于真实大气,随着气象和/或路径条件的变化,一种机制的主导统计数据逐渐融入另一种机制。特别是在这些过渡区域,给定的信号水平可能会出现在总时间百分比中,该百分比是不同机制的总和。本程序中的方法是刻意将干扰水平的预测与不同的传播机制分开,直到它们可以组合成路径的整体预测。