©作者2024,更正的出版物2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
大脑中不规则的电活动会导致人的行为、运动、感官体验和对周围环境的意识发生深刻而暂时的变化(Nasiri 和 Clifferd,2021 年)。在早期阶段识别和治疗癫痫对患有这种疾病的人来说可以带来关键而有价值的变化。头皮脑电图 (EEG) 是一种测量大脑电活动的非侵入性技术,是诊断癫痫的广泛使用的补充检查(Liang 等人,2020 年)。在癫痫发作期间,患者的脑电图将显示出明显的异常模式(Staba 等人,2014 年)。医生可以通过检查脑电图来帮助确定是否发生癫痫。然而,审查长期脑电图需要医生投入大量的时间和精力。因此,开发自动癫痫检测算法至关重要(Si 等人,2023 年)。研究人员正积极致力于开发利用脑电图数据自动检测癫痫发作的方法。从最初使用硬件电路的尝试到后来利用时域信息和基于阈值的方法进行癫痫发作检测。后续发展涉及使用频域特征和提取时频特征(Xia 等人,2015 年)进行癫痫发作检测。自引入以来,深度学习模型在计算机视觉任务中比手动提取的特征更具弹性(Chen 等人,2024 年)、语音识别(Eris and Akbal,2024 年)和自然语言处理(Luo 等人,2024 年)。因此,利用深度学习技术自动使用脑电图信号检测癫痫发作已显示出在做出最合适和最快临床决策方面具有重大前景(Ahmad 等人,2023 年)。近几年来,各种深度学习模型已用于癫痫发作检测,包括循环神经网络(Tuncer 和 Bolat,2022 年)、生成对抗网络(Rasheed 等人,2021 年)、深度神经网络(Liu 和 Richardson,2021 年)、分层神经网络(Hu 等人,2021 年)和卷积神经网络。这些模型取得了令人鼓舞的结果(Kaur 等人,2022 年)。卷积网络在逐像素进行端到端训练后,性能得到了进一步提升。随着全卷积网络 (FCN) 的引入,神经网络设计可以处理不同大小的输入,并通过高效的推理和学习机制产生相应大小的输出(Chou 等人,2023 年)。然而,FCN 尚未广泛应用于癫痫发作检测。同时,以往的深度学习算法往往忽略了不同通道对分类任务的贡献,导致模型的可解释性有限。针对上述问题,本文提出了一种基于深度学习的独立癫痫检测算法。算法可以从多通道脑电图数据中自主提取时间和空间信息,从而能够精确识别不同患者的癫痫发作事件。本文做出了几个关键贡献,包括:λ 提出了一种结合 SE(挤压和激励)模块的 CNN 模型检测算法。该方法已在 CHB-MIT 数据集上进行了评估,并取得了优异的性能。λ 首次将 FCN 模型中的上采样方法应用于癫痫发作检测,通过利用反卷积实现,将降尺度的图像从
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
抽象的细胞绘画测定产生的形态学特征是生物系统的多功能描述,并已用于预测体外和体内药物效应。但是,从经典软件(例如Cell -Profiler)提取的细胞绘画特征基于统计计算,通常在生物学上不易解释。在这项研究中,我们提出了一个新的特征空间,我们称之为生物层,该空间通过综合细胞健康测定法的读数来绘制这些细胞涂料的绘制。我们验证了所得的生物形状空间有效地连接到与其生物活性相关的形态学特征,而且对与给定生物活性相关的表型特征和细胞过程有了更深入的了解。生物形状空间揭示了各个化合物的作用机理,包括双作用化合物,例如蛋白质,蛋白质合成和DNA复制的抑制剂。总体而言,生物形态空间提供了一种与生物学相关的方法来解释使用细胞式诸如CellProfiler等软件得出的细胞形态特征,并生成用于实验验证的假设。
机器学习的应用在医学和健康中变得越来越普遍,从而实现了更准确的预测模型。但是,这通常以相互可预性为代价,从而限制了机器学习方法的临床影响。要意识到医疗保健中机器学习的潜力,从多个利益相关者和各个角度的透明度中理解此类模型至关重要,需要不同类型的解释。从这个角度来看,我们激励和探索了五种根本不同类型的事后机器学习解释性。我们强调了它们提供的不同信息,并描述了每个信息何时有用。我们研究了医疗保健领域的各种利益相关者,探讨了他们的特定目标,要求和目标。我们讨论当前的可解释性概念如何帮助满足这些概念以及每个利益相关者使机器学习模式在临床上产生影响的要求。最后,为了促进采用,我们发布了一个开源可解释性库(https://github.com/vanderschaarlab/interpretability),其中包含不同类型的可解释性的实现,包括可视化和探索解释的工具。
摘要 机器学习对脑电图 (EEG) 数据进行分类的研究为各种神经和精神疾病的诊断和预后提供了重要视角,但此类系统的临床应用率仍然很低。我们在此提出,将 EEG 机器学习研究转化为临床应用的大部分困难源于其技术报告中的一致不准确性,这严重损害了其通常很高的性能要求的可解释性。以 EEG 研究中使用的一类主要机器学习算法——支持向量机 (SVM) 为例,我们重点介绍了模型开发的三个重要方面(规范化、超参数优化和交叉验证),并表明,虽然这 3 个方面可以成就或破坏系统的性能,但令人震惊的是,绝大多数研究文献中都没有记录它们。对模型开发的这些方面进行更系统的描述构成了三个简单的步骤,以提高 EEG-SVM 研究的可解释性,并最终提高其临床应用。
在过去的十年中,人工智能 (AI) 领域取得了广泛的发展。现代放射肿瘤学基于对先进计算方法的利用,旨在实现个性化和高诊断和治疗精度。可用成像数据的数量和机器学习 (ML),特别是深度学习 (DL) 的不断发展,引发了从解剖和功能医学图像中发现“隐藏”生物标志物和定量特征的研究。深度神经网络 (DNN) 在图像处理任务中取得了出色的性能并得到了广泛的应用。最近,DNN 已被考虑用于放射组学,它们在可解释人工智能 (XAI) 方面的潜力可能有助于临床实践中的分类和预测。然而,它们中的大多数都使用有限的数据集并且缺乏普遍适用性。在本研究中,我们回顾了放射组学特征提取的基础知识、图像分析中的 DNN 以及有助于实现可解释人工智能的主要可解释性方法。此外,我们讨论了多中心招募大型数据集的关键要求,增加了生物标志物的变异性,从而确定放射组学的潜在临床价值和开发强大的可解释人工智能模型。